Skip to main content

Advertisement

Log in

Arterial Spin Labeling at 3.0 Tesla in Subacute Ischemia

Comparison to Dynamic Susceptibility Perfusion

  • Original Article
  • Published:
Clinical Neuroradiology Aims and scope Submit manuscript

Abstract

Purpose

Arterial spin labeling (ASL) is a promising but clinically not established non-invasive method to assess cerebral perfusion. The purpose of this study was to compare perfusion imaging with pulsed ASL (pASL) to conventional dynamic susceptibility contrast (DSC) perfusion-weighted imaging (PWL) using commercially available equipment and postprocessing (3.0 Tesla, 32-channel head coil) in patients with subacute ischemia.

Methods

The pASL and DSC-PWI techniques were compared in 15 patients with subacute ischemia (age 49–88 years, 6 females and 9 males, time from onset to scan 4–161 h). Image inhomogeneity was assessed with the non-uniformity index. Image quality, delineation of hypoperfusion and degree of hypoperfusion were rated by two readers using a 5-scale grading system. The volume of hypoperfusion was quantified planimetrically.

Results

Image quality and image inhomogeneity were superior in DSC time-to-peak (TTP) compared to pASL cerebral brain flow (CBF; both p < 0.05). The delineation of hypoperfusion was better in DSC-TTP (p < 0.05) and the hypoperfusion was graded as more severe in DSC-TTP (p < 0.05). The volume of hypoperfusion did not differ between pASL-CBF and DSC-TTP, however, in pASL-CBF five cases with small infarctions (lacunar and pontine) were false negative compared to DSC-relative CBF. The mismatch frequency was lower in pASL (13%) than in DSC-rCBF (20%) and DSC-TTP (47%).

Conclusions

Using a commercially available sequence and a 32-channel head coil at 3.0 Tesla pASL-CBF is feasible but limited compared to DSC-PWI in the assessment of ischemic stroke. In its present form pASL has a reserve role in clinical practice for situations when gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) is contraindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Detre JA, Alsop DC. Perfusion magnetic resonance imaging with continuous arterial spin labeling: methods and clinical applications in the central nervous system. Eur J Radiol. 1999;30(2):115–24. doi:s0720-048X(99)00050-9 [pii].

    Article  PubMed  CAS  Google Scholar 

  2. Latchaw RE, Yonas H, Hunter GJ, Yuh WT, Ueda T, Sorensen AG, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: a scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke. 2003;34(4):1084–104. doi:10.1161/01.STR.0000064840.99271.9E34/4/1084 [pii].

    Article  PubMed  Google Scholar 

  3. Detre JA, Leigh JS, Williams DS, Koretsky AP. Perfusion imaging. Magn Reson Med. 1992;23(1):37–45.

    Article  PubMed  CAS  Google Scholar 

  4. Calamante F, Thomas DL, Pell GS, Wiersma J, Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 1999;19(7):701–35. doi:10.1097/00004647-199907000-00001.

    Article  PubMed  CAS  Google Scholar 

  5. Barbier EL, Lamalle L, Decorps M. Methodology of brain perfusion imaging. J Magn Reson Imaging. 2001;13(4):496–520. doi:10.1002/jmri.1073 [pii].

    Article  PubMed  CAS  Google Scholar 

  6. Wintermark M, Sesay M, Barbier E, Borbely K, Dillon WP, Eastwood JD, et al. Comparative overview of brain perfusion imaging techniques. Stroke. 2005;36(9):e83–99. doi:01.STR.0000177884.72657.8b [pii] 10.1161/01.STR.0000177884.72657.8b.

    Article  PubMed  Google Scholar 

  7. Rosen BR, Belliveau JW, Vevea JM, Brady TJ. Perfusion imaging with NMR contrast agents. Magn Reson Med. 1990;14(2):249–65.

    Article  PubMed  CAS  Google Scholar 

  8. Liu TT, Brown GG. Measurement of cerebral perfusion with arterial spin labeling: part 1. Methods. J Int Neuropsychol Soc. 2007;13(3):517–25. doi:s1355617707070646 [pii] 10.1017/s1355617707070646.

    Article  PubMed  Google Scholar 

  9. Brown GG, Clark C, Liu TT. Measurement of cerebral perfusion with arterial spin labeling: part 2. Applications. J Int Neuropsychol Soc. 2007;13(3):526–38. doi:s1355617707070634 [pii] 10.1017/s1355617707070634.

    Article  PubMed  Google Scholar 

  10. Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging. Neurotherapeutics. 2007;4(3):346–59. doi:s1933-7213(07)00078-5 [pii] 10.1016/j.nurt.2007.04.005.

    Article  PubMed  Google Scholar 

  11. Chalela JA, Alsop DC, Gonzalez-Atavales JB, Maldjian JA, Kasner SE, Detre JA. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke. 2000;31(3):680–7.

    Article  PubMed  CAS  Google Scholar 

  12. Williams DS, Detre JA, Leigh JS, Koretsky AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci U S A. 1992;89(1):212–6.

    Article  PubMed  CAS  Google Scholar 

  13. Siewert B, Schlaug G, Edelman RR, Warach S. Comparison of EPISTAR and T2*-weighted gadolinium-enhanced perfusion imaging in patients with acute cerebral ischemia. Neurology. 1997;48(3):673–9.

    PubMed  CAS  Google Scholar 

  14. Wolf RL, Alsop DC, McGarvey ML, Maldjian JA, Wang J, Detre JA. Susceptibility contrast and arterial spin labeled perfusion MRI in cerebrovascular disease. J Neuroimaging. 2003;13(1):17–27.

    PubMed  Google Scholar 

  15. Viallon M, Altrichter S, Pereira VM, Nguyen D, Sekoranja L, Federspiel A, et al. Combined use of pulsed arterial spin-labeling and susceptibility-weighted imaging in stroke at 3 T. Eur Neurol. 2010;64(5):286–96. doi:000321162 [pii] 10.1159/000321162.

    Article  PubMed  Google Scholar 

  16. Dietrich O, Raya JG, Reeder SB, Ingrisch M, Reiser MF, Schoenberg SO. Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. Magn Reson Imaging. 2008;26(6):754–62. doi:s0730-725X(08)00033-7 [pii] 10.1016/j.mri.2008.02.001.

    Article  PubMed  Google Scholar 

  17. Wicks DA, Barker GJ, Tofts PS. Correction of intensity nonuniformity in MR images of any orientation. Magn Reson Imaging. 1993;11(2):183–96.

    Article  PubMed  CAS  Google Scholar 

  18. Li T, Mirowitz SA. Comparative study of fast MR imaging: quantitative analysis on image quality and efficiency among various time frames and contrast behaviors. Magn Reson Imaging. 2002;20(6):471–8. doi:s0730725X02005271 [pii].

    Article  PubMed  Google Scholar 

  19. Cohen JA. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20:37–46.

    Article  Google Scholar 

  20. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159–74.

    Article  PubMed  CAS  Google Scholar 

  21. Brumm KP, Perthen JE, Liu TT, Haist F, Ayalon L, Love T. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors. Neuroimage. 2010;51(3):995–1005. doi:s1053-8119(10)00278-8 [pii] 10.1016/j.neuroimage.2010.03.008.

    Article  PubMed  Google Scholar 

  22. Detre JA, Alsop DC, Vives LR, Maccotta L, Teener JW, Raps EC. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology. 1998;50(3):633–41.

    PubMed  CAS  Google Scholar 

  23. Hunsche S, Sauner D, Schreiber WG, Oelkers P, Stoeter P. FAIR and dynamic susceptibility contrast-enhanced perfusion imaging in healthy subjects and stroke patients. J Magn Reson Imaging. 2002;16(2):137–46. doi:10.1002/jmri.10150.

    Article  PubMed  Google Scholar 

  24. Jarnum H, Steffensen EG, Knutsson L, Frund ET, Simonsen CW, Lundbye-Christensen S, et al. Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology. 2010;52(4):307–17. doi:10.1007/s00234-009-0616-6.

    Article  PubMed  Google Scholar 

  25. Wolf RL, Wang J, Wang S, Melhem ER, O’Rourke DM, Judy KD, et al. Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging. 2005;22(4):475–82. doi:10.1002/jmri.20415.

    Article  PubMed  Google Scholar 

  26. Gaa J, Warach S, Wen P, Thangaraj V, Wielopolski P, Edelman RR. Noninvasive perfusion imaging of human brain tumors with EPISTAR. Eur Radiol. 1996;6(4):518–22.

    Article  PubMed  CAS  Google Scholar 

  27. Warmuth C, Gunther M, Zimmer C. Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology. 2003;228(2):523–32. doi:10.1148/radiol.22820204092282020409 [pii].

    Article  PubMed  Google Scholar 

  28. Kimura H, Takeuchi H, Koshimoto Y, Arishima H, Uematsu H, Kawamura Y, et al. Perfusion imaging of meningioma by using continuous arterial spin-labeling: comparison with dynamic susceptibility-weighted contrast-enhanced MR images and histopathologic features. AJNR Am J Neuroradiol. 2006;27(1):85–93. doi:27/1/85 [pii].

    PubMed  CAS  Google Scholar 

  29. Du AT, Jahng GH, Hayasaka S, Kramer JH, Rosen HJ, Gorno-Tempini ML, et al. Hypoperfusion in frontotemporal dementia and Alzheimer disease by arterial spin labeling MRI. Neurology. 2006;67(7):1215–20. doi:67/7/1215 [pii] 10.1212/01.wnl.0000238163.71349.78.

    Article  PubMed  CAS  Google Scholar 

  30. Alsop DC, Detre JA, Grossman M. Assessment of cerebral blood flow in Alzheimer’s disease by spin-labeled magnetic resonance imaging. Ann Neurol. 2000;47(1):93–100.

    Article  PubMed  CAS  Google Scholar 

  31. Johnson NA, Jahng GH, Weiner MW, Miller BL, Chui HC, Jagust WJ, et al. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology. 2005;234(3):851–9. doi:234/3/851 [pii] 10.1148/radiol.2343040197.

    Article  PubMed  Google Scholar 

  32. Clark CP, Brown GG, Frank L, Thomas L, Sutherland AN, Gillin JC. Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion-weighted functional MRI. Psychiatry Res. 2006;146(3):213–22. doi:s0925-4927(05)00214-3 [pii] 10.1016/j.pscychresns.2005.12.008.

    Article  PubMed  Google Scholar 

  33. Wu RH, Bruening R, Noachtar S, Arnold S, Berchtenbreiter C, Bartenstein P, et al. MR measurement of regional relative cerebral blood volume in epilepsy. J Magn Reson Imaging. 1999;9(3):435–40. doi:10.1002/(SICI)1522-2586(199903)9:3<435::AID-JMRI11>3.0.CO;2-J [pii].

    Article  PubMed  CAS  Google Scholar 

  34. Wolf RL, Alsop DC, Levy-Reis I, Meyer PT, Maldjian JA, Gonzalez-Atavales J, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol. 2001;22(7):1334–41.

    PubMed  CAS  Google Scholar 

  35. Kim J, Whyte J, Wang J, Rao H, Tang KZ, Detre JA. Continuous ASL perfusion fMRI investigation of higher cognition: quantification of tonic CBF changes during sustained attention and working memory tasks. Neuroimage. 2006;31(1):376–85. doi:s1053-8119(05)02494-8 [pii] 10.1016/j.neuroimage.2005.11.035.

    Article  PubMed  Google Scholar 

  36. Rosen BR, Belliveau JW, Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Q. 1989;5(4):263–81.

    PubMed  CAS  Google Scholar 

  37. Cvoro V, Marshall I, Armitage PA, Bastin ME, Carpenter T, Rivers CS, et al. MR diffusion and perfusion parameters: relationship to metabolites in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2010;81(2):185–91. doi:jnnp.2008.168393 [pii] 10.1136/jnnp.2008.168393.

    Article  PubMed  Google Scholar 

  38. Grandin CB, Duprez TP, Smith AM, Oppenheim C, Peeters A, Robert AR, et al. Which MR-derived perfusion parameters are the best predictors of infarct growth in hyperacute stroke? Comparative study between relative and quantitative measurements. Radiology. 2002;223(2):361–70.

    Article  PubMed  Google Scholar 

  39. Kane I, Carpenter T, Chappell F, Rivers C, Armitage P, Sandercock P, et al. Comparison of 10 different magnetic resonance perfusion imaging processing methods in acute ischemic stroke: effect on lesion size, proportion of patients with diffusion/perfusion mismatch, clinical scores, and radiologic outcomes. Stroke. 2007;38(12):3158–64. doi:STROKEAHA.107.483842 [pii] 10.1161/STROKEAHA.107.483842.

    Article  PubMed  Google Scholar 

  40. Koenig M, Klotz E, Luka B, Venderink DJ, Spittler JF, Heuser L. Perfusion CT of the brain: diagnostic approach for early detection of ischemic stroke. Radiology. 1998;209(1):85–93.

    PubMed  CAS  Google Scholar 

  41. Koenig M, Kraus M, Theek C, Klotz E, Gehlen W, Heuser L. Quantitative assessment of the ischemic brain by means of perfusion-related parameters derived from perfusion CT. Stroke. 2001;32(2):431–7.

    Article  PubMed  CAS  Google Scholar 

  42. Mayer TE, Hamann GF, Baranczyk J, Rosengarten B, Klotz E, Wiesmann M, et al. Dynamic CT perfusion imaging of acute stroke. AJNR Am J Neuroradiol. 2000;21(8):1441–9.

    PubMed  CAS  Google Scholar 

  43. Rivers CS, Wardlaw JM, Armitage PA, Bastin ME, Carpenter TK, Cvoro V, et al. Do acute diffusion- and perfusion-weighted MRI lesions identify final infarct volume in ischemic stroke? Stroke. 2006;37(1):98–104. doi:01.STR.0000195197.66606.bb [pii] 10.1161/01.STR.0000195197.66606.bb.

    Article  PubMed  CAS  Google Scholar 

  44. Schramm P. High-concentration contrast media in neurological multidetector-row CT applications: implications for improved patient management in neurology and neurosurgery. Neuroradiology. 2007;49(Suppl 1):35–45. doi:10.1007/s00234-007-1471-3.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors certify that there is no conflict of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Nölte MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huck, S., Kerl, H., Al-Zghloul, M. et al. Arterial Spin Labeling at 3.0 Tesla in Subacute Ischemia. Clin Neuroradiol 22, 29–37 (2012). https://doi.org/10.1007/s00062-011-0126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00062-011-0126-x

Keywords

Navigation