Skip to main content
Log in

Genetic diagnostics of inherited aortic diseases

Medical strategy analysis

Genetische Diagnostik von erblichen Aortenerkrankungen

Medizinische Strategieanalyse

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Genetic aortic syndromes (GAS) include Marfan, Loeys–Dietz, vascular Ehlers–Danlos, and Turner syndrome as well as congenital bicuspid aortic valve. The clinical management of these diseases has certain similarities and differences. We employed medical strategy analysis to test the utility of genetic diagnostics in the management of GAS. We chose the standpoint of the cardiologist for our analysis. In the first step, the medical goals in the management of GAS are specified. In the second step, the accuracy of genetic diagnostics for GAS is examined. Finally, conclusions can be drawn about the utility of genetic diagnostics in managing GAS. We found that genetic diagnostics is necessary to exclude GAS, to diagnose GAS, and to specify disease types. Second, combining phenotype with genotype information maximizes the predictability of the course of disease. Third, with genetic diagnostics it is possible to predict the birth of children with causative mutations for GAS and to initiate drug therapy to prevent the onset of aortic dilatation or to slow down its progression to aortic aneurysm. Finally, genetic diagnostics improves prognostic predictions and thereby contributes to a better timing of elective surgery and to a better choice of procedures. The findings of our medical strategy analysis indicate the high utility of genetic diagnostics for managing GAS.

Zusammenfassung

Genetische Aortensyndrome (GAS) umfassen das Marfan‑, Loeys-Dietz-, vaskuläre Ehlers-Danlos- und Turner-Syndrom sowie die kongenital bikuspide Aortenklappe. Das klinische Management dieser Erkrankungen weist Ähnlichkeiten und Unterschiede auf. Die Autoren verwendeten die medizinische Strategieanalyse, um die Nützlichkeit der genetischen Diagnostik zur Umsetzung der medizinischen Behandlungsziele beim Management von GAS zu ermitteln. Als Basis der Analyse wurde der Standpunkt des Kardiologen gewählt. Im ersten Schritt wurden die medizinischen Ziele des Managements von GAS spezifiziert. Im zweiten Schritt untersuchten die Autoren die diagnostische Genauigkeit der genetischen Diagnostik. Im dritten Schritt wurden Schlüsse auf die Nützlichkeit der Gendiagnostik zum Management von GAS gezogen. Als Ergebnis stellte sich heraus, dass erstens die genetische Diagnostik notwendig ist, um GAS auszuschließen oder zu diagnostizieren und um die vorliegende Erkrankung zu spezifizieren. Zweitens erhöht die genetische Diagnostik die Vorhersagbarkeit des Verlaufs einer Aortenerkrankung. Drittens macht es die genetische Diagnostik möglich, die Geburt von Kindern mit GAS-bedingenden Mutationen vorherzusagen und eine prophylaktische Medikation zur Verhinderung der Dilatation oder der Bildung von Aneurysmen der Aorta einzuleiten. Schließlich erwirkt die genetische Diagnostik durch bessere Prognosen ein verbessertes Timing prophylaktischer Operationen und trägt zur verbesserten Auswahl spezifischer Prozeduren bei. Damit folgt aus der medizinischen Strategieanalyse, dass die genetische Diagnostik einen großen Nutzen beim Management von GAS aufweist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. KBV (2017) Einheitlicher Bewertungsmaßstab (EBM). http://www.kbv.de/html/ebm.php. Accessed: 4 April 2017

    Google Scholar 

  2. Arslan-Kirchner M, Arbustini E, Boileau C et al (2016) Clinical utility gene card for: Hereditary thoracic aortic aneurysm and dissection including next-generation sequencing-based approaches. Eur J Hum Genet 24:e1–e5

    Article  PubMed  Google Scholar 

  3. Aydin A, Adsay BA, Sheikhzadeh S et al (2013) Observational cohort study of ventricular arrhythmia in adults with Marfan syndrome caused by FBN1 mutations. PLoS ONE 8:e81281

    Article  PubMed  PubMed Central  Google Scholar 

  4. Blankart CR, Milstein R, Rybczynski M et al (2016) Economic and care considerations of Marfan syndrome. Expert Rev Pharmacoecon Outcomes Res 16:591–598

    Article  PubMed  Google Scholar 

  5. Bondy CA (2008) Aortic dissection in Turner syndrome. Curr Opin Cardiol 23:519–526

    Article  PubMed  PubMed Central  Google Scholar 

  6. Boodhwani M, Andelfinger G, Leipsic J et al (2014) Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol 30:577–589

    Article  PubMed  Google Scholar 

  7. Brandenburg RO Jr., Tajik AJ, Edwards WD et al (1983) Accuracy of 2‑dimensional echocardiographic diagnosis of congenitally bicuspid aortic valve: echocardiographic-anatomic correlation in 115 patients. Am J Cardiol 51:1469–1473

    Article  PubMed  Google Scholar 

  8. Braverman AC (1998) Exercise and the Marfan syndrome. Med Sci Sports Exerc 30:S387–395

    Article  CAS  PubMed  Google Scholar 

  9. Braverman AC, Harris KM, Kovacs RJ, Maron BJ (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 7: aortic diseases, including marfan syndrome: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol 66:2398–2405

    Article  PubMed  Google Scholar 

  10. Caleshu C, Ashley EA (2016) Taming the genome: towards better genetic test interpretation. Genome Med 8:70

    Article  PubMed  PubMed Central  Google Scholar 

  11. Callewaert B, De Paepe A, Coucke P (1993) Arterial Tortuosity Syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews. University of Washington, Seattle WA

    Google Scholar 

  12. Callewaert BL, Willaert A, Kerstjens-Frederikse WS et al (2008) Arterial tortuosity syndrome: clinical and molecular findings in 12 newly identified families. Hum Mutat 29:150–158

    Article  CAS  PubMed  Google Scholar 

  13. Cannaerts E, van de Beek G, Verstraeten A et al (2015) TGF-beta signalopathies as a paradigm for translational medicine. Eur J Med Genet 58:695–703

    Article  PubMed  Google Scholar 

  14. Carpenter SW, Kodolitsch YV, Debus ES et al (2014) Acute aortic syndromes: definition, prognosis and treatment options. J Cardiovasc Surg (Torino) 55:133–144

    CAS  Google Scholar 

  15. Cheng A, Owens D (2016) Marfan syndrome, inherited aortopathies and exercise: What is the right answer? Br J Sports Med 50:100–104

    Article  PubMed  Google Scholar 

  16. Child AH, Aragon-Martin JA, Sage K (2016) Genetic testing in Marfan syndrome. Br J Hosp Med (Lond) 77(1):38–41

    Article  Google Scholar 

  17. Coron F, Rousseau T, Jondeau G et al (2012) What do French patients and geneticists think about prenatal and preimplantation diagnoses in Marfan syndrome? Prenat Diagn 32:1318–1323

    Article  CAS  PubMed  Google Scholar 

  18. De Backer J, Loeys B, Leroy B et al (2007) Utility of molecular analyses in the exploration of extreme intrafamilial variability in the Marfan syndrome. Clin Genet 72:188–198

    Article  PubMed  Google Scholar 

  19. Durlach J (2001) A possible advance in arterial gene therapy for aortic complications in the Marfan syndrome by local transfer of an antisense Mg-dependent hammerhead ribozyme. Magnes Res 14:65–67

    CAS  PubMed  Google Scholar 

  20. Erbel R, Aboyans V, Boileau C et al (2014) 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases. Eur Heart J 35:2873–2926

    Article  PubMed  Google Scholar 

  21. Girdauskas E, Borger MA (2013) Bicuspid aortic valve and associated aortopathy: an update. Semin Thorac Cardiovasc Surg 25:310–316

    Article  PubMed  Google Scholar 

  22. Girdauskas E, Robinson PN, von Kodolitsch Y (2017) Interpreting phenotypic features of bicuspid aortic valve disease: from simplification to complexity to simplicity? Am J Med. doi:10.1016/j.amjmed.2016.12.043

    PubMed  Google Scholar 

  23. Groenink M, Mulder BJM (2016) How to treat Marfan syndrome: an update. Eur Heart J 37:986–987

    Article  PubMed  Google Scholar 

  24. Groth KA, Von Kodolitsch Y, Kutsche K et al (2016) Evaluating the quality of Marfan genotype-phenotype correlations in existing FBN1 databases. Genet Med. doi:10.1038/gim.2016.181

    Google Scholar 

  25. Hatzaras I, Tranquilli M, Coady M et al (2007) Weight lifting and aortic dissection: more evidence for a connection. Cardiology 107:103–106

    Article  CAS  PubMed  Google Scholar 

  26. Jondeau G, Ropers J, Regalado E et al (2016) International Registry of Patients Carrying TGFBR1 or TGFBR2 Mutations: Results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet 9:548–558

    Article  CAS  PubMed  Google Scholar 

  27. Kallenbach K, Kojic D, Oezsoez M et al (2013) Treatment of ascending aortic aneurysms using different surgical techniques: a single-centre experience with 548 patients. Eur J Cardiothorac Surg 44:337–345

    Article  PubMed  Google Scholar 

  28. Kang JW, Song HG, Yang DH et al (2013) Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging 6:150–161

    Article  PubMed  Google Scholar 

  29. Koenig SN, Lincoln J, Garg V (2017) Genetic basis of aortic valvular disease. Curr Opin Cardiol. doi:10.1097/HCO.0000000000000384

    PubMed  Google Scholar 

  30. Lacro RV, Dietz HC, Sleeper LA et al (2014) Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med 371:2061–2071

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lacro RV, Dietz HC, Wruck LM et al (2007) Rationale and design of a randomized clinical trial of beta-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am Heart J 154:624–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lledo B, Ten J, Galan FM, Bernabeu R (2006) Preimplantation genetic diagnosis of Marfan syndrome using multiple displacement amplification. Fertil Steril 86:949–955

    Article  CAS  PubMed  Google Scholar 

  33. Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  CAS  PubMed  Google Scholar 

  34. Loeys BL, Dietz HC, Braverman AC et al (2010) The revised Ghent nosology for the Marfan syndrome. J Med Genet 47:476–485

    Article  CAS  PubMed  Google Scholar 

  35. Loeys BL, Schwarze U, Holm T et al (2006) Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 355:788–798

    Article  CAS  PubMed  Google Scholar 

  36. Lopes KR, Delezoide AL, Baumann C et al (2006) Prenatal Marfan syndrome: report of one case and review of the literature. Prenat Diagn 26:696–699

    Article  CAS  PubMed  Google Scholar 

  37. MacCarrick G, Black JH 3rd, Bowdin S et al (2014) Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med 16:576–587

    Article  PubMed  PubMed Central  Google Scholar 

  38. Madelin R (2009) The voice of 12,000 patients. Experiences and expectations of rare disease patients on diagnosis and care in europe. http://www.eurordis.org/IMG/pdf/voice_12000_patients/EURORDISCARE_FULLBOOKr.pdf. Accessed: 4 April 2017

    Google Scholar 

  39. Malfait F, Francomano C, Byers P et al (2017) The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet 175:8–26

    Article  PubMed  Google Scholar 

  40. Marella GL, Furnari C, Perfetti E, Arcudi G (2011) Aortic dissection and cocaine use. J Forensic Leg Med 18:329–331

    Article  PubMed  Google Scholar 

  41. Matthijs G, Souche E, Alders M et al (2016) Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet 24:2–5

    Article  CAS  PubMed  Google Scholar 

  42. Milewicz D, Hostetler E, Wallace S et al (2016) Precision medical and surgical management for thoracic aortic aneurysms and acute aortic dissections based on the causative mutant gene. J Cardiovasc Surg (Torino) 57:172–177

    Google Scholar 

  43. Milewicz DM, Guo DC, Tran-Fadulu V et al (2008) Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet 9:283–302

    Article  CAS  PubMed  Google Scholar 

  44. Milewicz DM, Regalado E (2003) Heritable thoracic aortic disease overview. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K (eds) GeneReviews. University of Washington, Seattle WA, pp 1993–2017

    Google Scholar 

  45. Mukherjee D, Eagle KA (2005) Aortic dissection – an update. Curr Probl Cardiol 30:287–325

    Article  PubMed  Google Scholar 

  46. Murdoch JL, Walker BA, Halpern BL et al (1972) Life expectancy and causes of death in the Marfan syndrome. N Engl J Med 286:804–808

    Article  CAS  PubMed  Google Scholar 

  47. Pepin MG, Schwarze U, Rice KM et al (2014) Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med 16:881–888

    Article  CAS  PubMed  Google Scholar 

  48. Pyeritz R, Jondeau G, Moran R et al (2014) Loeys-Dietz syndrome is a specific phenotype and not a concomitant of any mutation in a gene involved in TGF-beta signaling. Genet Med 16:641–642

    Article  CAS  PubMed  Google Scholar 

  49. Pyeritz RE (2009) Marfan syndrome: 30 years of research equals 30 years of additional life expectancy. Heart 95:173–175

    Article  PubMed  Google Scholar 

  50. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rippe M, De Backer J, Kutsche K et al (2016) Mitral valve prolapse syndrome and MASS phenotype: stability of aortic dilatation but progression of mitral valve prolapse. IJC Heart Vasc 10:39–46

    Article  Google Scholar 

  52. Rybczynski M, Koschyk DH, Aydin MA et al (2007) Tissue Doppler imaging identifies myocardial dysfunction in adults with Marfan syndrome. Clin Cardiol 30:19–24

    Article  PubMed  Google Scholar 

  53. Rybczynski M, Mir TS, Sheikhzadeh S et al (2010) Frequency and age-related course of mitral valve dysfunction in the Marfan syndrome. Am J Cardiol 106:1048–1053

    Article  PubMed  Google Scholar 

  54. Schaefer BM, Lewin MB, Stout KK et al (2008) The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart 94:1634–1638

    Article  CAS  PubMed  Google Scholar 

  55. Schmidtke J (2016) Value of genetic testing in the management of thoracic aortic aneurysms (TAAD). Gefasschirurgie 21:398–402

    Article  Google Scholar 

  56. Schulze-Bahr E, Klaassen S, Abdul-Khaliq H, Schunkert H (2015) Gendiagnostik bei kardiovaskulären Erkrankungen. Kardiologe 9:213–243

    Article  CAS  Google Scholar 

  57. Schulze-Bahr E, Klaassen S, Abdul-Khaliq H, Schunkert H (2015) Molecular diagnosis for cardiovascular diseases. Dtsch Med Wochenschr 140:1538

    Article  PubMed  Google Scholar 

  58. Sheikhzadeh S, Kade C, Keyser B et al (2012) Analysis of phenotype and genotype information for the diagnosis of Marfan syndrome. Clin Genet 82:240–247

    Article  CAS  PubMed  Google Scholar 

  59. Shores J, Berger KR, Murphy EA, Pyeritz RE (1994) Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 330:1335–1341

    Article  CAS  PubMed  Google Scholar 

  60. Silverman DI, Burton KJ, Gray J et al (1995) Life expectancy in the Marfan syndrome. Am J Cardiol 75:157–160

    Article  CAS  PubMed  Google Scholar 

  61. Spits C, De Rycke M, Verpoest W et al (2006) Preimplantation genetic diagnosis for Marfan syndrome. Fertil Steril 86:310–320

    Article  PubMed  Google Scholar 

  62. Stadie R, Geipel A, Heep A et al (2007) Prenatal diagnosis of Marfan syndrome. Ultrasound Obstet Gynecol 30:119–121

    Article  CAS  PubMed  Google Scholar 

  63. Tiryakioglu SK, Tiryakioglu O, Turan T, Kumbay E (2009) Aortic dissection due to sildenafil abuse. Interact Cardiovasc Thorac Surg 9:141–143

    Article  PubMed  Google Scholar 

  64. Velvin G, Bathen T, Rand-Hendriksen S, Geirdal AO (2015) Systematic review of the psychosocial aspects of living with Marfan syndrome. Clin Genet 87:109–116

    Article  CAS  PubMed  Google Scholar 

  65. Velvin G, Bathen T, Rand-Hendriksen S, Geirdal AO (2015) Work participation in adults with Marfan syndrome: demographic characteristics, MFS related health symptoms, chronic pain, and fatigue. Am J Med Genet A 167a:3082–3090

    Article  PubMed  Google Scholar 

  66. Verstraeten A, Luyckx I, Loeys B (2017) Aetiology and management of hereditary aortopathy. Nat Rev Cardiol 14:197–208

    Article  CAS  PubMed  Google Scholar 

  67. Vlahos NF, Triantafyllidou O, Vitoratos N et al (2013) Preimplantation genetic diagnosis in marfan syndrome. Case Rep Obstet Gynecol 2013:542961

    CAS  PubMed  PubMed Central  Google Scholar 

  68. von Kodolitsch Y, Bernhardt AM, Kölbel T et al (2015) Maximizing therapeutic success: The key concepts of individualized medical strategy (IMS). Cogent Med 2:1109742

    Google Scholar 

  69. von Kodolitsch Y, Blankart CR, Vogler M et al (2015) Genetics and prevention of genetic aortic syndromes (GAS) and of the Marfan syndrome. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 58:146–153

    Article  Google Scholar 

  70. von Kodolitsch Y, De Backer J, Schüler H et al (2015) Perspectives on the revised Ghent criteria for the diagnosis of Marfan syndrome. Appl Clin Genet 8:137–155

    Article  Google Scholar 

  71. von Kodolitsch Y, Kaemmerer H (2017) Bicuspid aortic valve. In: Niwa K, Kaemmerer H (eds) Aortopathy. Springer, Tokyo, pp 229–256

    Chapter  Google Scholar 

  72. von Kodolitsch Y, Kutsche K (2015) Interpretation of sequence variants of the FBN1 gene: analog or digital? A commentary on decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. J Hum Genet 60(9):465–466

    Article  Google Scholar 

  73. von Kodolitsch Y, Rybczynski M (2007) Sport und Fitness. In: Marfan-Syndrom: Ein Ratgeber für Patienten, Angehörige und Betreuende. Steinkopff, Darmstadt, pp 134–137

    Chapter  Google Scholar 

  74. von Kodolitsch Y, Rybczynski M, Bernhardt A et al (2010) Marfan syndrome and the evolving spectrum of heritable thoracic aortic disease: Do we need genetics for clinical decisions? Vasa 39:17–32

    Article  Google Scholar 

  75. von Kodolitsch Y, Rybczynski M, Vogler M et al (2016) The role of the multidisciplinary health care team in the management of patients with Marfan syndrome. J Multidiscip Healthc 9:587–614

    Article  Google Scholar 

  76. Weiss MM, Van der Zwaag B, Jongbloed JD et al (2013) Best practice guidelines for the use of next-generation sequencing applications in genome diagnostics: a national collaborative study of Dutch genome diagnostic laboratories. Hum Mutat 34:1313–1321

    Article  PubMed  Google Scholar 

  77. Westover AN, Nakonezny PA (2010) Aortic dissection in young adults who abuse amphetamines. Am Heart J 160:315–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zierer A, Voeller RK, Hill KE et al (2007) Aortic enlargement and late reoperation after repair of acute type A aortic dissection. Ann Thorac Surg 84:479–486 (discussion 486–477)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. von Kodolitsch.

Ethics declarations

Conflict of interest

Y. von Kodolitsch and K. Kutsche declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Kodolitsch, Y., Kutsche, K. Genetic diagnostics of inherited aortic diseases. Herz 42, 459–467 (2017). https://doi.org/10.1007/s00059-017-4577-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-017-4577-y

Keywords

Schlüsselwörter

Navigation