Skip to main content
Log in

Pathophysiologie der chronischen Myokardischämie

Pathophysiology of chronic myocardial ischemia

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Eine Myokardischämie wird verursacht durch das Missverhältnis zwischen Sauerstoffangebot und Sauerstoffbedarf. Die häufigste Ursache einer Myokardischämie ist die Behinderung des koronaren Blutflusses durch eine obstruktive koronare Herzkrankheit (KHK), die mittels Bypass-Operation (ACB-OP) oder perkutaner Koronarintervention (PCI) behandelt werden kann. Allerdings haben 40% der Patienten nach ACB-OP oder PCI langfristig weiterhin Angina-Pectoris-Beschwerden. Neben der obstruktiven KHK können mikrovaskuläre Veränderungen und eine endotheliale Dysfunktion zu einer chronischen Myokardischämie führen, die mittels ACB-OP und PCI nicht behandelbar sind. Intrazellulär geht die Myokardischämie mit einer Natriumakkumulation einher, die u. a. durch die Aktivierung des späten Natriumstroms (I Na, late) bedingt ist. Die erhöhte Natriumkonzentration bedingt eine Funktionsumkehr des Natrium-Kalzium-Austauschers (NCX), der nun Natrium aus der Zelle befördert und im Gegenzug Kalzium hineinlässt. Diese Kalziumüberladung aktiviert die kontraktilen Filamente in der Diastole mit der Folge einer erhöhten Wandspannung. Dies verschlechtert die Mikrozirkulation, erhöht den O2-Verbrauch und verstärkt so die Ischämie.

Abstract

Myocardial ischemia is caused by a mismatch between myocardial oxygen supply and myocardial oxygen requirements. Obstructive coronary artery disease (CAD) is the most common cause for myocardial ischemia. Although coronary bypass graft (CABG) surgery und percutaneous coronary interventions (PCI) are established therapies to treat CAD, 10 years after CABG or PCI 40% of the patients still have angina pectoris. Besides obstructive CAD, chronic myocardial ischemia can be induced by small vessel disease and endothelial dysfunction that is not treatable with CABG or PCI. On the cellular basis myocardial ischemia leads to a sodium overload that is caused by an increase in the late sodium current (I Na, late). The increased intracellular sodium concentration leads to a mode switch of the sodium/calcium exchanger (NCX) that now eliminates sodium from the cell and transports calcium into the cell. The resulting calcium overload activates the contractile myofilaments causing an increased wall tension in diastole which compromises the microcirculation and intensifies myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Scholz KH, Maier SKG, Jung J et al (2012) Reduction in treatment times through formalized data feedback: results from a prospective multicenter study in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv 5:848–857

    Article  PubMed  Google Scholar 

  2. Schoenhagen P, Ziada KM, Kapadia SR et al (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603

    Article  PubMed  CAS  Google Scholar 

  3. Stone GW, Maehara A, Lansky AJ et al (2011) A prospective natural-history study of coronary atherosclerosis. N Engl J Med 364:226–235

    Article  PubMed  CAS  Google Scholar 

  4. Hueb W, Lopes N, Gersh BJ et al (2010) Ten-year follow-up survival of the Medicine, Angioplasty, or Surgery Study (MASS II): a randomized controlled clinical trial of 3 therapeutic strategies for multivessel coronary artery disease. Circulation 122:949–957

    Article  PubMed  Google Scholar 

  5. Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of elective coronary angiography. N Engl J Med 362:886–895

    Article  PubMed  CAS  Google Scholar 

  6. Johnston N, Schenck-Gustafsson K, Lagerqvist B (2011) Are we using cardiovascular medications and coronary angiography appropriately in men and women with chest pain? Eur Heart J 32:1331–1336

    Article  PubMed  Google Scholar 

  7. Douglas PS, Patel MR, Bailey SR et al (2011) Hospital variability in the rate of finding obstructive coronary artery disease at elective, diagnostic coronary angiography. J Am Coll Cardiol 58:801–809

    Article  PubMed  Google Scholar 

  8. Kawano H, Node K (2011) The role of vascular failure in coronary artery spasm. J Cardiol 57:2–7

    Article  PubMed  Google Scholar 

  9. Ong P, Athanasiadis A, Borgulya G et al (2012) High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol 59:655–662

    Article  PubMed  CAS  Google Scholar 

  10. Schachinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    Article  PubMed  CAS  Google Scholar 

  11. Mering GO von, Arant CB, Wessel TR et al (2004) Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109:722–725

    Article  Google Scholar 

  12. Nitenberg A, Pham I, Antony I et al (2005) Cardiovascular outcome of patients with abnormal coronary vasomotion and normal coronary arteriography is worse in type 2 diabetes mellitus than in arterial hypertension: a 10 year follow-up study. Atherosclerosis 183:113–120

    Article  PubMed  CAS  Google Scholar 

  13. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356:830–840

    Article  PubMed  CAS  Google Scholar 

  14. Regitz-Zagrosek V (2011) Sex and gender differences in symptoms of myocardial ischaemia. Eur Heart J 32:3064–3066

    Article  PubMed  Google Scholar 

  15. Chimenti C, Sale P, Verardo R et al (2010) High prevalence of intramural coronary infection in patients with drug-resistant cardiac syndrome X: comparison with chronic stable angina and normal controls. Heart 96:1926–1931

    Article  PubMed  CAS  Google Scholar 

  16. Ju YK, Saint DA, Gage PW (1996) Hypoxia increases persistent sodium current in rat ventricular myocytes. J Physiol 497(Pt 2):337–347

    PubMed  CAS  Google Scholar 

  17. Sossalla S, Maier LS (2012) Role of ranolazine in angina, heart failure, arrhythmias, and diabetes. Pharmacol Ther 133:311–323

    Article  PubMed  CAS  Google Scholar 

  18. Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 65:1045–1056

    Article  PubMed  CAS  Google Scholar 

  19. Maier LS, Layug B, Karwatowska-Prokopczuk E et al (2013) RAnoLazIne for the Treatment of Diastolic Heart Failure in Patients With Preserved Ejection Fraction: The RALI-DHF Proof-of-Concept Study. JACC Heart Failure 1:115–122

    Article  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist für sich und seinen Koautoren auf folgende Beziehungen hin: Die Autoren kooperieren wissenschaftlich im Rahmen klinischer Studien mit Gilead und Menarini und halten Vorträge u. a. für Berlin-Chemie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.S. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobshagen, C., Maier, L. Pathophysiologie der chronischen Myokardischämie. Herz 38, 329–333 (2013). https://doi.org/10.1007/s00059-013-3790-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-013-3790-6

Schlüsselwörter

Keywords

Navigation