Skip to main content
Log in

Cellular immune mechanisms in myocarditis

Zelluläre Immunmechanismen bei Myokarditis

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The introduction of immunohistological techniques enabled a substantially more reliable diagnosis of inflammatory cardiomyopathy (DCMi) in endomyocardial biopsies (EMB) compared to the histological Dallas criteria. Decisive progress has been made in the understanding of cellular immune mechanisms in DCMi using immunohistological techniques, which apart from the field of diagnosis refinement have had prognostic implications and an influence on the selection criteria of DCMi patients who will likely benefit from immunosuppressive treatment. Digital image analysis systems have been employed to standardize quantification of immunohistological EMB stainings. Quantification of T cell-related genes by a methodologically validated preamplified real-time RT-PCR revealed that the T cells are characterized by differential expression of Th1-, Treg-, and CTL-related markers, while no major role could be confirmed for Th17 cells. The reported virus-associated differential T cell receptor Vbeta dominance suggests an antiviral specificity of virus-induced T cell responses in human DCMi.

Zusammenfassung

Durch die Einführung immunhistologischer Techniken ist die Diagnostik der inflammatorischen Kardiomyopathie (DCMi) bei Endomyokardbiopsien (EMB) im Vergleich zu den Dallas-Kriterien deutlich verlässlicher geworden. Ein entscheidender Fortschritt im Verständnis der zellulären Immunmechanismen wurde durch die Immunhistologie ermöglicht und hat neben der verbesserten Diagnostik zu prognostischen Implikationen und zu neuen Selektionskriterien für jene DCMi-Patienten geführt, die von einer Immunsuppression profitieren könnten. Ein digitales Bildanalysesystem wurde zur standardisierten Quantifizierung der Immunhistologie von EMB etabliert. Die Quantifizierung von T-Zell-Genen mittels einer methodisch validierten präamplifizierten Echtzeit-Reverse-Transkriptase-Polymerasekettenreaktion zeigte, dass die T-Zell-Infiltrate bei DCMi durch eine differenzielle Expression von Th1, regulatorische und zytotoxische T-Zellen charakterisierenden Markern gekennzeichnet sind, während Th17-Zellen nicht erhöht nachweisbar sind. Die beobachteten Dominanzen von T-Zell-Rezeptor-Vbeta-Familien sind mit einer antiviralen Antigenspezifität der T-Zell-Antwort bei DCMi vereinbar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of cardiomyopathies. Circulation 93:841–842

    Article  PubMed  CAS  Google Scholar 

  2. McCarthy RE IIIrd, Boehmer JP, Hruban RH et al (2000) Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342:690–695

    Article  PubMed  Google Scholar 

  3. D’Ambrosio A, Patti G, Manzoli A et al (2001) The fate of acute myocarditis between spontaneous improvement and evolution to dilated cardiomyopathy: a review. Heart 85:499–504

    Article  Google Scholar 

  4. Di Lenarda A, Pinamonti B, Mestroni L et al (2004) The natural history of dilated cardiomyopathy: a review of the Heart Muscle Disease Registry of Trieste. Ital Heart J Suppl 5:253–266

    Google Scholar 

  5. Kindermann I, Kindermann M, Kandolf R et al (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648

    Article  PubMed  Google Scholar 

  6. Grogan M, Redfield MM, Bailey KR et al (1995) Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26:80–84

    Article  PubMed  CAS  Google Scholar 

  7. Drory Y, Turetz Y, Hiss Y et al (1991) Sudden unexpected death in persons less than 40 years of age. Am J Cardiol 68:1388–1392

    Article  PubMed  CAS  Google Scholar 

  8. Phillips M, Robinowitz M, Higgins JR et al (1986) Sudden cardiac death in Air Force recruits. A 20-year review. JAMA 256:2696–2699

    Article  PubMed  CAS  Google Scholar 

  9. Wesslen L, Pahlson C, Lindquist O et al (1996) An increase in sudden unexpected cardiac deaths among young Swedish orienteers during 1979–1992. Eur Heart J 17:902–910

    Article  PubMed  CAS  Google Scholar 

  10. Karjalainen J, Heikkila J (1999) Incidence of three presentations of acute myocarditis in young men in military service. A 20-year experience. Eur Heart J 20:1120–1125

    Article  PubMed  CAS  Google Scholar 

  11. Andersson B, Caidahl K, Waagstein F (1995) Idiopathic dilated cardiomyopathy among Swedish patients with congestive heart failure. Eur Heart J 16:53–60

    Article  PubMed  CAS  Google Scholar 

  12. Taylor DO, Stehlik J, Edwards LB et al (2009) Registry of the international society for heart and lung transplantation: twenty-sixth official adult heart transplant report-2009. J Heart Lung Transplant 28:1007–1022

    Article  PubMed  Google Scholar 

  13. Holzmann M, Nicko A, Kühl U et al (2008) Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 118:1722–1728

    Article  PubMed  Google Scholar 

  14. Maisch B, Pankuweit S, Karatolios K, Ristic AD (2006) Invasive techniques—from diagnosis to treatment. Rheumatology (Oxford, England) 45(Suppl 4):iv32–38

  15. Aretz HT (1987) Myocarditis: the Dallas criteria. Hum Pathol 18:619–624

    Article  PubMed  CAS  Google Scholar 

  16. Strauer BE, Kandolf R, Mall G et al (1996) Myocarditis—cardiomyopathy. Consensus report of the German association for internal medicine, presented at the 100th annual meeting, Wiesbaden, 13 April 1994. Acta Cardiologica 51:347–371

    PubMed  CAS  Google Scholar 

  17. Shanes JG, Ghali J, Billingham ME et al (1987) Interobserver variability in the pathologic interpretation of endomyocardial biopsy results. Circulation 75:401–405

    Article  PubMed  CAS  Google Scholar 

  18. Hauck AJ, Kearney DL, Edwards WD (1989) Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: implications for role of sampling error. Mayo Clin Proc 64:1235–1245

    PubMed  CAS  Google Scholar 

  19. Kühl U, Noutsias M, Seeberg B, Schultheiss HP (1996) Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 75:295–300

    Article  PubMed  Google Scholar 

  20. Caforio AL, Baboonian C, McKenna WJ (1997) Postviral autoimmune heart disease—fact or fiction? Eur Heart J 18:1051–1055

    Article  PubMed  CAS  Google Scholar 

  21. Noutsias M, Seeberg B, Schultheiss HP, Kühl U (1999) Expression of cell adhesion molecules in dilated cardiomyopathy: evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 99:2124–2131

    Article  PubMed  CAS  Google Scholar 

  22. Maisch B, Bültman B, Factor S et al (1999) World Heart Federation consensus conferences’s definition of inflammatory cardiomyopathy (myocarditis): report from two expert commitees on histology and viral cardiomyopathy. Heartbeat 4:3–4

    Google Scholar 

  23. Maisch B, Portig I, Ristic A et al (2000) Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus. A status report. Herz 25:200–209

    Article  PubMed  CAS  Google Scholar 

  24. Hufnagel G, Pankuweit S, Richter A et al (2000) The European Study of Epidemiology and Treatment of Cardiac Inflammatory Diseases (ESETCID). First epidemiological results. Herz 25:279–285

    Article  PubMed  CAS  Google Scholar 

  25. Frustaci A, Russo MA, Chimenti C (2009) Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 30:1995–2002

    Article  PubMed  CAS  Google Scholar 

  26. Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  27. Baccouche H, Mahrholdt H, Meinhardt G et al (2009) Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J 30:2869–2879

    Article  PubMed  CAS  Google Scholar 

  28. Pankuweit S, Richter A, Ruppert V, Maisch B (2009) Classification of cardiomyopathies and indication for endomyocardial biopsy revisited. Herz 34:55–62

    Article  PubMed  Google Scholar 

  29. Noutsias M, Pauschinger M, Schultheiss HP, Kuhl U (2003) Cytotoxic perforin+ and TIA-1+ infiltrates are associated with cell adhesion molecule expression in dilated cardiomyopathy. Eur J Heart Fail 5:469–479

    Article  PubMed  CAS  Google Scholar 

  30. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C et al (2001) Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation 104:39–45

    Article  PubMed  CAS  Google Scholar 

  31. Ino T, Kishiro M, Okubo M et al (1997) Late persistent expressions of ICAM-1 and VCAM-1 on myocardial tissue in children with lymphocytic myocarditis. Cardiovasc Res 34:323–328

    Article  PubMed  CAS  Google Scholar 

  32. Parrillo JE (2001) Inflammatory cardiomyopathy (myocarditis): which patients should be treated with anti-inflammatory therapy? Circulation 104:4–6

    Article  PubMed  CAS  Google Scholar 

  33. Noutsias M, Pauschinger M, Ostermann K et al (2002) Digital image analysis system for the quantification of infiltrates and cell adhesion molecules in inflammatory cardiomyopathy. Med Sci Monit 8:MT59–71

    PubMed  CAS  Google Scholar 

  34. Noutsias M, Hohmann C, Pauschinger M et al (2003) sICAM-1 correlates with myocardial ICAM-1 expression in dilated cardiomyopathy. Int J Cardiol 91:153–161

    Article  PubMed  Google Scholar 

  35. Noutsias M, Pauschinger M, Schultheiss H, Kühl U (2002) Phenotypic characterization of infiltrates in dilated cardiomyopathy—diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med Sci Monit 8:CR478–487

    PubMed  Google Scholar 

  36. Maisch B, Richter A, Sandmoller A et al (2005) Inflammatory dilated cardiomyopathy (DCMI). Herz 30:535–544

    Article  PubMed  Google Scholar 

  37. Klingel K, Hohenadl C, Canu A et al (1992) Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation. Proc Natl Acad Sci U S A 89:314–318

    Article  PubMed  CAS  Google Scholar 

  38. Springer TA (1990) Adhesion receptors of the immune system. Nature 346:425–434

    Article  PubMed  CAS  Google Scholar 

  39. Noutsias M, Kühl U, Lassner D et al (2007) Parvovirus B19-associated active myocarditis with biventricular thrombi—results of endomyocardial biopsy investigations and cardiac magnetic resonance imaging. Circulation 115:e378–380

    Article  PubMed  Google Scholar 

  40. Wojnicz R, Nowalany-Kozielska E, Wodniecki J et al (1998) Immunohistological diagnosis of myocarditis. Potential role of sarcolemmal induction of the MHC and ICAM-1 in the detection of autoimmune mediated myocyte injury. Eur Heart J 19:1564–1572

    Article  PubMed  CAS  Google Scholar 

  41. Matsumoto G, Nghiem MP, Nozaki N et al (1998) Cooperation between CD44 and LFA-1/CD11a adhesion receptors in lymphokine-activated killer cell cytotoxicity. J Immunol 160:5781–5789

    PubMed  CAS  Google Scholar 

  42. Mason JW, O’Connell JB, Herskowitz A et al (1995) A clinical trial of immunosuppressive therapy for myocarditis. The myocarditis treatment trial investigators. N Engl J Med 333:269–275

    Article  PubMed  CAS  Google Scholar 

  43. Staudt A, Schaper F, Stangl V et al (2001) Immunohistological changes in dilated cardiomyopathy induced by immunoadsorption therapy and subsequent immunoglobulin substitution. Circulation 103:2681–2686

    Article  PubMed  CAS  Google Scholar 

  44. Liu PP, Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104:1076–1082

    Article  PubMed  CAS  Google Scholar 

  45. Noutsias M, Liu P (2010) Coxsackievirus Induced Murine Myocarditis and Immunomodulatory Interventions. In: Schultheiss HP, Noutsias M eds, Inflammatory Cardiomyopathy (DCMi)—Pathogenesis and Therapy. Birkhäuser, Basel S 51–70

  46. Matsumoto Y (2000) Characterization of T cell receptor (TCR) of organ-specific autoimmune disease-inducing T cells and TCR-based immunotherapy with DNA vaccines. J Neuroimmunol 110:1–12

    Article  PubMed  CAS  Google Scholar 

  47. Schefe JH, Lehmann KE, Buschmann IR et al (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med (Berlin, Germany) 84:901–910

  48. Noutsias M, Rohde M, Block A et al (2008) Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 9:3

    Article  PubMed  Google Scholar 

  49. Block A, Rohde M, Erben U et al (2008) Impact of cell culture media on the expansion efficiency and T-cell receptor Vbeta (TRBV) repertoire of in vitro expanded T cells using feeder cells. Med Sci Monit 14:BR88–95

    PubMed  CAS  Google Scholar 

  50. Peixoto A, Monteiro M, Rocha B, Veiga-Fernandes H (2004) Quantification of multiple gene expression in individual cells. Genome Res 14:1938–1947

    Article  PubMed  CAS  Google Scholar 

  51. Kühl U, Pauschinger M, Schwimmbeck PL et al (2003) Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 107:2793–2798

    Article  PubMed  Google Scholar 

  52. Noutsias M, Pankuweit S, Maisch B (2009) Pathophysiological mechanisms of parvovirus B19 infection. J Clin Microbiol 47:2358–2359 (author reply 2359)

    Article  PubMed  Google Scholar 

  53. Lindner J, Noutsias M, Lassner D et al (2009) Adaptive immune responses against parvovirus B19 in patients with myocardial disease. J Clin Virol 44:27–32

    Article  PubMed  CAS  Google Scholar 

  54. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. N Engl J Med 362:1248–1249

    Article  PubMed  CAS  Google Scholar 

  55. Dennert R, Velthuis S, Schalla S et al (2010) Intravenous immunoglobulin therapy for patients with idiopathic cardiomyopathy and endomyocardial biopsy-proven high PVB19 viral load. Antivir Ther 15:193–201

    Article  PubMed  CAS  Google Scholar 

  56. Veinot JP (2002) Diagnostic endomyocardial biopsy pathology—general biopsy considerations, and its use for myocarditis and cardiomyopathy: a review. Can J Cardiol 18:55–65

    PubMed  Google Scholar 

  57. Noutsias M, Pauschinger M, Kühl U, Schultheiss HP (2003) Diagnostic endomyocardial biopsy interpretation. Can J Cardiol 19:98–99 (author reply 99–100)

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the UKGM Foundation (project: 10/2009 MR) to M.N. and B.M.

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Noutsias FESC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noutsias, M., Patil, V. & Maisch, B. Cellular immune mechanisms in myocarditis. Herz 37, 830–835 (2012). https://doi.org/10.1007/s00059-012-3700-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3700-3

Keywords

Schlüsselwörter

Navigation