Skip to main content
Log in

Molecular signatures and the study of gene expression profiles in inflammatory heart diseases

Molekulare Signaturen und Genexpressionsprofile bei entzündlichen Herzerkrankungen

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

Myocarditis, a common heart disease pathologically defined as an inflammatory reaction of the myocardium, is most frequently caused by infectious agents, including viruses and bacteria, and may develop in later stages into dilated cardiomyopathy (DCM). Several studies have identified inflammatory components engaged in the transition from acute myocarditis to chronic DCM, and there is growing evidence that myocarditis and DCM are closely related. Novel technological advances in genomic screening have gained insight into molecular and cellular mechanisms involved the pathogenesis of inflammatory heart disease and, in particular, in the development of systolic dysfunction resulting from DCM. Detection of differential gene expression profiles have become valid tools in the study of inflammatory heart disease. Molecular signatures are defined as individual sets of genes, mRNA transcripts, proteins, genetic variations or other variables, which can be used as markers for a particular phenotype. These signatures may be useful for clinical diagnosis or risk assessment and, in addition, may help to identify molecules not previously known to be involved in the pathogenesis of these disease conditions.

Microarray analyses have dramatically refined our knowledge about tissue-specific gene expression patterns, simply by being able to study thousands of genes simultaneously in a single experiment. In the field of cardiovascular research, microarrays are increasingly used in the study of end-stage cardiomyopathies, such as DCM, that ultimately lead to symptoms of heart failure. By means of microarray analysis, a set of differentially expressed genes can be detected, among them are transcripts coding for sarcomeric and extracellular matrix proteins, stress response and inflammatory proteins as well as transcription factors and translational regulators. Expression profiling may be particularly helpful to improve the differential diagnosis of heart failure and enable novel insight into selected molecular pathways.

Zusammenfassung

Die Myokarditis als entzündliche Herzmuskelerkrankung ist die häufigste Ursache einer Herzinsuffizienz bei Patienten, die jünger als 40 Jahre sind. Zwischen 10 und 20% dieser Patienten mit histologischem Nachweis einer entzündlichen Herzmuskelerkrankung entwickeln – auch wenn klinisch zunächst symptomfrei – eine chronische Erkrankung, die zur Ausbildung einer dilatativen Kardiomyopathie („dilated cardiomyopathy“, DCM) mit zunehmender Herzschwäche führt. Die Entwicklung kann in 3 Phasen eingeteilt werden: Während in der ersten Phase die infektiösen Erreger dominieren, wird in der zweiten Phase die Autoimmunität durch einen chronisch autoreaktiven Prozess unterhalten, dessen hämodynamische Folgen in der dritten Phase eine zunehmende kardiale Dilatation und eine Funktionsstörung sein können. Da die Kardiomyopathie in der Praxis aber ein Kontinuum dieser 3 Phasen darstellt, wird nach Markern gesucht, die die unterschiedlichen Stadien in der Pathogenese der DCM zuverlässig erfassen können. Diese molekularen Signaturen sind eine Reihe von Genen, Proteinen, genetischen Varianten oder anderen Variablen, die als Marker für einen bestimmten Phänotyp verwendet werden können. Sie können einerseits für die klinische Diagnose oder Risikobewertung von Erkrankungen nützlich sein, und andererseits lassen sich Moleküle identifizieren, die bisher nicht mit der Erkrankung in Verbindung gebracht wurden.

Mikroarray-Untersuchungen, mit denen durch eine simultane Analyse tausender Gene gewebespezifische Expressionsprofile erstellt werden können, erweitern die Erkenntnisse über die Pathogenese von Erkrankungen. Auch auf dem Gebiet der kardiovaskulären Erkrankungen werden Mikroarray-Untersuchungen zunehmend eingesetzt. Damit konnte eine Reihe von unterschiedlich regulierten Genen nachgewiesen werden, darunter Transkripte, die für Proteine des Sarkomers oder der extrazellulären Matrix, für Stressproteine, inflammatorische Proteine sowie für Transkriptions- und Translationsfaktoren kodieren. Die so generierten molekularen Signaturen können einen Beitrag zur Differenzierung der unterschiedlichen Phasen der Pathogenese von der Myokarditis zur dilatativen Kardiomyopathie liefern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343:1388–1398

    Article  PubMed  CAS  Google Scholar 

  2. Magnani JW, Dec GW (2006) Myocarditis. Current trends in diagnosis and treatment. Circulation 113:876–890

    Article  PubMed  Google Scholar 

  3. Ellis CR, Di Salvo T (2007) Myocarditis. Basic and clinical aspects. Cardiol Rev 15:170–177

    Article  PubMed  Google Scholar 

  4. Pankuweit S, Moll R, Baandrup U, Portig I et al (2003) Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 34:497–503

    Article  PubMed  Google Scholar 

  5. Kühl U, Pauschinger M, Noutsias M, Seeberg B et al (2005) High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic “left ventricular dysfunction. Circulation 111:887–893

    Article  PubMed  Google Scholar 

  6. Maisch B, Richter A, Kölsch S, Alter P et al (2006) Management of patients with suspected (peri)myocarditis and inflammatory dilated cardiomyopathy. Herz 31:881–889

    Article  PubMed  Google Scholar 

  7. Mahrholdt H, Wagner A, Deluigi CC, Kispert E et al (2006) Presentation, patterns of myocardial damage, and clinical couse of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  8. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538

    Article  PubMed  CAS  Google Scholar 

  9. Blauwet L, Cooper LT (2010) Myocarditis. Prog Cardiovasc Dis 52:274–288

    Article  PubMed  Google Scholar 

  10. Pankuweit S, Maisch B (2010) The heart in viral infections. Internist (Berl) 51:836–843

  11. Pisani B, Taylor DO, Mason JW (1997) Inflammatory myocardial diseases and cardiomyopathies. Am J Med 102:459–469

    Article  PubMed  CAS  Google Scholar 

  12. Ardehali H, Qasim A, Cappola T, Howard D et al (2004) Endomyocardial biopsy plays a role in diagnosing patients with unexplained cardiomyopathy. Am Heart J 147:919–923

    Article  PubMed  Google Scholar 

  13. Mills RM, Lauer MS (2004) Endomyocardial biopsy: a procedure in search of an indication. Am Heart J 147:759–760

    Article  PubMed  Google Scholar 

  14. Cook SA, Rosenzweig A (2002) DNA microarrays. Implications for cardiovascular medicine. Circ Res 91:559–564

    Article  PubMed  CAS  Google Scholar 

  15. Perrot A, Kabaeva Z, Wenzel K, Osterziel KJ (2005) Gene expression analysis of human tissue from patients with cardiomyopathies: a new tool for guiding therapies in the future? J Card Surg 20:17–19

    Article  Google Scholar 

  16. Nanni L, Romualdi C, Maseri A, Lanfranchi G (2006) Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J Mol Cell Cardiol 41:934–948

    Article  PubMed  CAS  Google Scholar 

  17. Nilsson R, Björkegren J, Tegnér J (2009) On reliable discovery of molecular signatures. BMC Bioinformatics 10:38

    Article  PubMed  Google Scholar 

  18. Woodruff JJ (1980) Viral myocarditis—a review. Am J Pathol 101:427–479

    Google Scholar 

  19. Wolfgram LJ, Beisel KW, Herskowitz A, Rose NR (1986) Variations in the susceptibility to Coxsackievirus B3-induced myocarditis among different strains of mice. J Immunol 136:1846–1852

    PubMed  CAS  Google Scholar 

  20. Imanaka-Yoshida K, Hiroe M, Nishikawa T, Ishiyama S et al (2001) Tenascin-C modulates adhesion of cardiomyocytes to extracellular matrix during tissue remodeling after myocardial infarction. Lab Invest 81:1015–1024

    Article  PubMed  CAS  Google Scholar 

  21. Imanaka-Yoshida K, Hiroe M, Yasutomi Y, Yasutomi Y et al (2002) Tenascin-C is a useful marker for disease activity in myocarditis. J Pathol 197:387–394

    Article  Google Scholar 

  22. Ruppert V, Meyer T, Pankuweit S, Jonsdottir T et al (2008) Activation of STAT1 transcription factor precedes up-regulation of coxsackievirus-adenovirus receptor (CAR) during viral myocarditis. Cardiovasc Pathol 17:81–92

    Article  PubMed  CAS  Google Scholar 

  23. Taylor LA, Carthy CM, Yang D et al (2000) Host gene regulation during coxsackievirus B3 infection in mice: assessment by microarrays. Circ Res 87:328–334

    Article  PubMed  CAS  Google Scholar 

  24. Kerekatte V, Keiper BD, Badorff C, Cai A et al (1999) Cleavage of poly(A)-binding protein by Coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J Virol 73:709–717

    PubMed  CAS  Google Scholar 

  25. Regitz-Zagrosek V, Oertelt-Prigione O, Seeland U, Hetser R (2010) Sex and gender differences in myocardial hypertrophy and heart failure. Circ J 74:1265–1273

    Article  PubMed  CAS  Google Scholar 

  26. Roger VL, Go AS, Lloyd-Jones DM, Adams RJ et al (2011) Heart disease and stroke statistics–2011 update. Circulation 123: e18–e209

    Article  PubMed  Google Scholar 

  27. Frisancho-Kiss S, Davis SE, Nyland JF, Frisancho JA et al (2007) Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease. J Immunol 178:6710–6714

    PubMed  CAS  Google Scholar 

  28. Coronado MJ, Brandt JE, Kim E, Bucek A et al (2012) Testosterone and interleukin-1β increase cardiac remodeling during coxsackievirus B3 myocarditis via serpin A 3n. Am J Physiol Heart Circ Physiol 302:H1726–H1736

    Article  PubMed  CAS  Google Scholar 

  29. Barrans JD, Allen PD, Stamatiou D, Dzau VJ et al (2002) Global gene expression profiling of end-stage dilated cardiomyopathy using a human cardiovascular-based cDNA microarray. Am J Pathol 160:2035–2043

    Article  PubMed  CAS  Google Scholar 

  30. Yung CK, Halperin VL, Tomaselli GF, Winslow RL (2004) Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 83:281–297

    Article  PubMed  CAS  Google Scholar 

  31. Grzeskowiak R, Witt H, Drungowski M, Thermann R et al (2003) Expression profiling of human dilated cardiomyopathy. Cardiovasc Res 59:400–411

    Article  PubMed  CAS  Google Scholar 

  32. Nanni L, Romualdi C, Maseri A, Lanfranchi G (2006) Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J Mol Cell Cardiol 41:934–948

    Article  PubMed  CAS  Google Scholar 

  33. Yang J, Moravec CS, Sussman MA, DiPaola NR et al (2000) Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 102:3046–3052

    Article  PubMed  CAS  Google Scholar 

  34. Hwang JJ, Allen PD, Tseng GC, Lam CW et al (2002) Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol Genomics 10:31–44

    PubMed  CAS  Google Scholar 

  35. Steenbergen C, Afshari CA, Petranka JG, Collins J et al (2003) Alterations in apoptotic signaling in human idiopathic cardiomyopathic hearts in failure. Am J Physiol Heart Circ Physiol 284:H268–H276

    PubMed  CAS  Google Scholar 

  36. Kääb S, Barth AS, Margerie D et al (2004) Global gene expression in human myocardium—oligonucleotide microarray analysis of regional diversity and transcriptional regulation in heart failure. J Mol Med 82:308–316

    Article  PubMed  Google Scholar 

  37. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ et al (2005) Gene expression analysis of ischemic and nonischemic cardiomyopathy: shared and distinct genes in the development of heart failure. Physiol Genomics 21:299–307

    Article  PubMed  CAS  Google Scholar 

  38. Kittleson MM, Minhas KM, Irizarry RA, Ye SQ et al (2005) Gene expression in giant cell myocarditis: altered expression of immune response genes. Int J Cardiol 102:333–340

    Article  PubMed  Google Scholar 

  39. Cunha-Neto E, Dzau VJ, Allen PD, Stamatiou D et al (2005) Cardiac gene expression profiling provides evidence for cytokinopathy as a molecular mechanism in Chagas’ disease cardiomyopathy. Am J Pathol 167:305–313

    Article  PubMed  CAS  Google Scholar 

  40. Ruppert V, Meyer T, Pankuweit S, Möller E et al (2008) Gene expression profiling from endomyocardial biopsies allows distinction between subentities of dilated cardiomyopathy. J Thorac Cardiovasc Surg 136(2):360–369.e1

    Article  PubMed  CAS  Google Scholar 

  41. Heidecker B, Kittleson MM, Kasper EK, Wittstein IS et al (2011) Transcriptomic biomarkers for the accurate diagnosis of myocarditis. Circulation 123:1174–1184

    Article  PubMed  CAS  Google Scholar 

  42. Heidecker B, Kasper EK, Wittstein IS, Champion HC et al (2008) Transcriptomic biomarkers for individual risk assessment in new-onset heart failure. Circulation 118:238–246

    Article  PubMed  CAS  Google Scholar 

  43. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC et al (2010) Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 362:1890–1900

    Article  PubMed  CAS  Google Scholar 

  44. Cooper LT Jr, Shabetai R (1995) Immunosuppressive therapy for myocarditis. N Engl J Med 333:1713–1714

    Article  PubMed  Google Scholar 

  45. Maisch B, Hufnagel G, Kölsch S, Funck R et al (2004) Treatment of inflammatory dilated cardiomyopathy and (peri)myocarditis with immunosuppression and i.v. immunoglobulins. Herz 29:624–636

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ruppert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruppert, V., Maisch, B. Molecular signatures and the study of gene expression profiles in inflammatory heart diseases. Herz 37, 619–626 (2012). https://doi.org/10.1007/s00059-012-3662-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-012-3662-5

Keywords

Schlüsselwörter

Navigation