Skip to main content
Log in

Biomarkers in Inflammatory and Noninflammatory Cardiomyopathy

Biomarker bei inflammatorischer und nichtinflammatorischer Kardiomyopathie

  • Published:
Herz Aims and scope Submit manuscript

Abstract

Acute myocarditis (AMC) and its sequela, dilated cardiomyopathy (DCM), are most often caused by cardiotropic viral infections in the Western world. Inflammatory cardiomyopathy (DCMi) is a specific cardiomyopathy entity of DCM, being defined by the proof of intramyocardial inflammation and/or viral infection in endomyocardial biopsies (EMBs). Diagnostic procedures of EMBs are indispensable for the etiopathogenic differentiation of the disease. Experienced cardiology centers have reported low complication rates of EMB obtainment. The histological Dallas criteria are prone to substantial sampling error and interobserver variability, have no prognostic impact and, moreover, are not suitable to select AMC/DCMi patients who favorably respond to immunosuppression. Immunohistological detection of myocarditis and viral persistence have proven adverse prognostic impact in AMC and DCM patients, respectively. This contemporary diagnostic repertoire on EMBs is essential for the selection of DCMi patients who will likely benefit from immunomodulatory treatment, which has been addressed in randomized trials. During the past decade, cardiac magnetic resonance (CMR) has developed as a valuable noninvasive diagnostic approach for the detection and localization of intramyocardial inflammation, and CMR guidelines for AMC have been elaborated. Late gadolinium enhancement (LGE) has been associated with adverse prognostic outcome in DCM patients. CMR techniques, however, are not suitable to specifically detect myocardial viral infections. To date, no classic biomarker has been shown to differentiate between DCMi and noninflammatory cardiomyopathies.

Zusammenfassung

Die akute Myokarditis (AMC) und ihre Folgeerkrankung, die dilatative Kardiomyopathie (DCM), werden in der westlichen Welt am häufigsten durch kardiotrope Viren hervorgerufen. Die „inflammatorische Kardiomyopathie“ (DCMi) ist eine spezifische Kardiomyopathieentität, definiert durch den Nachweis einer Herzmuskelentzündung und/oder einer Virusinfektion in Endomyokardbiopsien (EMBs). Diagnostische Untersuchungen an EMBs sind unabdingbar für die ätiopathogenetische Differenzierung der Erkrankung. Die Komplikationsrate der EMBs ist in erfahrenen Zentren sehr gering. Die histologischen Dallas-Kriterien unterliegen einem erheblichen „Probefehler“ und einer Interobservervariabilität, haben keine prognostische Aussagekraft und taugen vor allem nicht zur Auswahl geeigneter AMC-/DCMi-Patienten für die Immunsuppression. Die immunhistologische Diagnostik der DCMi und der molekularbiologische Nachweis von Virusgenomen haben eine nachgewiesene prognostische Bedeutung bei AMC- und DCM-Patienten. Dieses zeitgemäße und umfassende diagnostische Repertoire an EMBs ist für die Selektion von DCMi-Patienten wichtig, die wahrscheinlich von einem immunmodulatorischen Regime profitieren, wie in randomisierten Studien bereits gezeigt. Die kardiale Magnetresonanztomographie (CMR) hat sich in der vergangenen Dekade als ein wichtiges nichtinvasives diagnostisches Verfahren für die sensitive Detektion und Lokalisation der Entzündungsreaktion im Myokard entwickelt. Entsprechende Richtlinien sind bereits erarbeitet worden. Late Gadolinium-Enhancement (LGE) ist mit einer schlechteren Prognose von DCM-Patienten assoziiert. CMR kann jedoch nicht spezifisch die myokardialen Virusinfektionen darstellen. Bislang hat keiner der bekannten kardialen Biomarker eine Differenzierung zwischen DCMi und nichtinflammatorischen Kardiomyopathien ermöglicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation 1996;93:841–842.

    CAS  PubMed  Google Scholar 

  2. Caforio AL, Calabrese F, Angelini A, et al. A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 2007;28:1326–1333.

    Article  PubMed  Google Scholar 

  3. Pankuweit S, Moll R, Baandrup U, et al. Prevalence of the parvovirus B19 genome in endomyocardial biopsy specimens. Hum Pathol 2003;34:497–503.

    Article  PubMed  Google Scholar 

  4. Kühl U, Pauschinger M, Bock T, et al. Parvovirus B19 infection mimicking acute myocardial infarction. Circulation 2003;108:945–950.

    Article  PubMed  Google Scholar 

  5. Kühl U, Pauschinger M, Noutsias M, et al. High prevalence of viral genomes and multiple viral infections in the myocardium of adults with “idiopathic” left ventricular dysfunction. Circulation 2005;111:887–889

    Article  PubMed  Google Scholar 

  6. Baccouche H, Mahrholdt H, Meinhardt G, et al. Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J 2009;30(23):2869–2879.

    Article  CAS  PubMed  Google Scholar 

  7. Morrow DA, de Lemos JA. Benchmarks for the assessment of novel cardiovascular biomarkers. Circulation 2007;115:949–952.

    Article  PubMed  Google Scholar 

  8. Biomarker Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95.

    Article  Google Scholar 

  9. Maisch B, Bültman B, Factor S, et al., Invited Consultants: McKenna WJ, Thiene G, Schulthei Luna A, Goodwin JF, Richardson PJ. World Heart Federation consensus conferences’s definition of inflammatory cardiomyopathy (myocarditis): report from two expert commitees on histology and viral cardiomyopathy. Heartbeat 1999;4:3–4

    Google Scholar 

  10. Holzmann M, Nicko A, Kühl U, et al. Complication rate of right ventricular endomyocardial biopsy via the femoral approach: a retrospective and prospective study analyzing 3048 diagnostic procedures over an 11-year period. Circulation 2008;118:1722–1728.

    Article  PubMed  Google Scholar 

  11. Cooper LT, Baughman KL, Feldman AM, et al. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 2007;116:2216–2233.

    Article  PubMed  Google Scholar 

  12. Aretz HT. Myocarditis: the Dallas criteria. Hum Pathol 1987;18:619–624.

    Article  CAS  PubMed  Google Scholar 

  13. Grogan M, Redfield MM, Bailey KR, et al. Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 1995;26:80–84.

    Article  CAS  PubMed  Google Scholar 

  14. Kindermann I, Kindermann M, Kandolf R, et al. Predictors of outcome in patients with suspected myocarditis. Circulation 2008;118:639–648.

    Article  PubMed  Google Scholar 

  15. Strauer BE, Kandolf R, Mall G, et al. Myocarditis — cardiomyopathy. Consensus report of the German Association for Internal Medicine, presented at the 100th annual meeting, Wiesbaden, 13 April 1994. Acta Cardiol 1996;51:347–371.

    CAS  PubMed  Google Scholar 

  16. Shanes JG, Ghali J, Billingham ME, et al. Interobserver variability in the pathologic interpretation of endomyocardial biopsy results. Circulation 1987;75:401–405.

    CAS  PubMed  Google Scholar 

  17. Hauck AJ, Kearney DL, Edwards WD. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: implications for role of sampling error. Mayo Clin Proc 1989;64:1235–1245.

    CAS  PubMed  Google Scholar 

  18. Billingham ME. Myocarditis and endomyocardial biopsy. Ann Intern Med 1989;110:165–166.

    CAS  PubMed  Google Scholar 

  19. Mason JW, O’Connell JB, Herskowitz A, et al. A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. N Engl J Med 1995;333:269–275.

    Article  CAS  PubMed  Google Scholar 

  20. Maisch B, Camerini F, Schultheiss HP. Immunosuppressive therapy for myocarditis. N Engl J Med 1995;333:1713, author reply 1714.

    Article  CAS  PubMed  Google Scholar 

  21. Cooper LT Jr, Berry GJ, Shabetai R. Idiopathic giant-cell myocarditis — natural history and treatment. Multicenter Giant Cell Myocarditis Study Group Investigators. N Engl J Med 1997;336:1860–1866.

    Article  PubMed  Google Scholar 

  22. Schultheiss HP, Noutsias M, Kühl U, et al. Myocarditis and viral cardiomyopathy. In: Camm AJ, Lüscher TF, Serruys PW, eds. The ESC textbook of cardiovascular medicine. Oxford: Blackwell, 2006:490–501

    Google Scholar 

  23. Noutsias M, Pauschinger M, Schultheiss HP, et al. Advances in the immunohistological diagnosis of inflammatory cardiomyopathy. Eur Heart J Suppl 2002;4:I54–I62.

    Article  Google Scholar 

  24. Kühl U, Noutsias M, Seeberg B, et al. Immunohistological evidence for a chronic intramyocardial inflammatory process in dilated cardiomyopathy. Heart 1996;75:295–300.

    Article  PubMed  Google Scholar 

  25. Noutsias M, Seeberg B, Schultheiss HP, et al. Expression of cell adhesion molecules in dilated cardiomyopathy: evidence for endothelial activation in inflammatory cardiomyopathy. Circulation 1999;99:2124–2131.

    CAS  PubMed  Google Scholar 

  26. Maisch B, Portig I, Ristic A, et al. Definition of inflammatory cardiomyopathy (myocarditis): on the way to consensus. A status report. Herz 2000;25:200–209.

    Article  CAS  PubMed  Google Scholar 

  27. Hufnagel G, Pankuweit S, Richter A, et al. The European Study of Epidemiology and Treatment of Cardiac Inflammatory Diseases (ESETCID). First epidemiological results. Herz 2000;25:279–285.

    Article  CAS  PubMed  Google Scholar 

  28. Frustaci A, Russo MA, Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus- negative inflammatory cardiomyopathy: the TIMIC study. Eur Heart J 2009;30:1995–2002.

    Article  CAS  PubMed  Google Scholar 

  29. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 2004;109:1250–1258.

    Article  PubMed  Google Scholar 

  30. Pankuweit S, Richter A, Ruppert V, et al. [Classification of cardiomyopathies and indication for endomyocardial biopsy revisited.] Herz 2009;34:55–62.

    Article  PubMed  Google Scholar 

  31. Springer TA. Adhesion receptors of the immune system. Nature 1990;346:425–434.

    Article  CAS  PubMed  Google Scholar 

  32. Noutsias M, Pauschinger M, Schultheiss HP, et al. Cytotoxic perforin+ and TIA-1+ infiltrates are associated with cell adhesion molecule expression in dilated cardiomyopathy. Eur J Heart Fail 2003;5:469–479.

    Article  CAS  PubMed  Google Scholar 

  33. Wojnicz R, Nowalany-Kozielska E, Wojciechowska C, et al. Randomized, placebo-controlled study for immunosuppressive treatment of inflammatory dilated cardiomyopathy: two-year follow-up results. Circulation 2001;104:39–45.

    Article  CAS  PubMed  Google Scholar 

  34. Herskowitz A, Ahmed-Ansari A, Neumann DA, et al. Induction of major histocompatibility complex antigens within the myocardium of patients with active myocarditis: a nonhistologic marker of myocarditis. J Am Coll Cardiol 1990;15:624–632.

    Article  CAS  PubMed  Google Scholar 

  35. Ino T, Kishiro M, Okubo M, et al. Late persistent expressions of ICAM-1 and VCAM-1 on myocardial tissue in children with lymphocytic myocarditis. Cardiovasc Res 1997;34:323–328.

    Article  CAS  PubMed  Google Scholar 

  36. Noutsias M, Pauschinger M, Ostermann K, et al. Digital image analysis system for the quantification of infiltrates and cell adhesion molecules in inflammatory cardiomyopathy. Med Sci Monit 2002;8:MT59–MT71.

    CAS  PubMed  Google Scholar 

  37. Parrillo JE. Inflammatory cardiomyopathy (myocarditis): which patients should be treated with anti-inflammatory therapy? Circulation 2001;104:4–6.

    Article  CAS  PubMed  Google Scholar 

  38. Gutberlet M, Spors B, Thoma T, et al. Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 2008;246:401–409.

    Article  PubMed  Google Scholar 

  39. Kühl U, Schultheiss HP. Treatment of chronic myocarditis with corticosteroids. Eur Heart J 1995;16:168–172.

    PubMed  Google Scholar 

  40. Noutsias M, Rohde M, Block A, et al. Preamplification techniques for real-time RT-PCR analyses of endomyocardial biopsies. BMC Mol Biol 2008;9:3.

    Article  PubMed  Google Scholar 

  41. Kühl U, Pauschinger M, Seeberg B, et al. Viral persistence in the myocardium is associated with progressive cardiac dysfunction. Circulation 2005;112:1965–1970.

    Article  PubMed  Google Scholar 

  42. Why HJ, Meany BT, Richardson PJ, et al. Clinical and prognostic significance of detection of enteroviral RNA in the myocardium of patients with myocarditis or dilated cardiomyopathy. Circulation 1994;89:2582–2589.

    CAS  PubMed  Google Scholar 

  43. Fujioka S, Kitaura Y, Ukimura A, et al. Evaluation of viral infection in the myocardium of patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2000;36:1920–1926.

    Article  CAS  PubMed  Google Scholar 

  44. Baboonian C, Treasure T. Meta-analysis of the association of enteroviruses with human heart disease. Heart 1997;78:539–543.

    CAS  PubMed  Google Scholar 

  45. Pauschinger M, Bowles NE, Fuentes-Garcia FJ, et al. Detection of adenoviral genome in the myocardium of adult patients with idiopathic left ventricular dysfunction. Circulation 1999;99:1348–1354.

    CAS  PubMed  Google Scholar 

  46. Bowles NE, Ni J, Kearney DL, et al. Detection of viruses in myocardial tissues by polymerase chain reaction. evidence of adenovirus as a common cause of myocarditis in children and adults. J Am Coll Cardiol 2003;42:466–472.

    Article  PubMed  Google Scholar 

  47. Bultmann BD, Klingel K, Sotlar K, et al. Parvovirus B19: a pathogen responsible for more than hematologic disorders. Virchows Arch 2003;442:8–17.

    PubMed  Google Scholar 

  48. Pauschinger M, Doerner A, Kühl U, et al. Enteroviral RNA replication in the myocardium of patients with left ventricular dysfunction and clinically suspected myocarditis. Circulation 1999;99:889–895.

    CAS  PubMed  Google Scholar 

  49. Streitz M, Noutsias M, Volkmer R, et al. NS1 specific CD8+ T-cells with effector function and TRBV11 dominance in a patient with parvovirus B19 associated inflammatory cardiomyopathy. PLoS ONE 2008;3:e2361.

    Article  PubMed  Google Scholar 

  50. Kühl U, Lassner D, Pauschinger M, et al. Prevalence of erythrovirus genotypes in the myocardium of patients with dilated cardiomyopathy. J Med Virol 2008;80:1243–1251.

    Article  PubMed  Google Scholar 

  51. Kuethe F, Lindner J, Matschke K, et al. Prevalence of parvovirus B19 and human bocavirus DNA in the heart of patients with no evidence of dilated cardiomyopathy or myocarditis. Clin Infect Dis 2009:in press.

  52. Escher F, Modrow S, Sabi T, et al. Parvovirus B19 profiles in patients presenting with acute myocarditis and chronic dilated cardiomyopathy. Med Sci Monit 2008;14:CR589–597.

    PubMed  Google Scholar 

  53. Li Y, Bourlet T, Andreoletti L, et al. Enteroviral capsid protein VP1 is present in myocardial tissues from some patients with myocarditis or dilated cardiomyopathy. Circulation 2000;101:231–234.

    CAS  PubMed  Google Scholar 

  54. Dettmeyer R, Baasner A, Schlamann M, et al. Role of virus-induced myocardial affections in sudden infant death syndrome: a prospective postmortem study. Pediatr Res 2004;55:947–952.

    Article  PubMed  Google Scholar 

  55. Escher F, Kühl U, Sabi T, et al. Immunohistological detection of parvovirus B19 capsid proteins in endomyocardial biopsies from dilated cardiomyopathy patients. Med Sci Monit 2008;14:CR333–338.

    PubMed  Google Scholar 

  56. Kühl U, Pauschinger M, Schwimmbeck PL, et al. Interferon-beta treatment eliminates cardiotropic viruses and improves left ventricular function in patients with myocardial persistence of viral genomes and left ventricular dysfunction. Circulation 2003;107:2793–2798.

    Article  PubMed  Google Scholar 

  57. Friedrich MG, Strohm O, Schulz-Menger J, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 1998;97:1802–1809.

    CAS  PubMed  Google Scholar 

  58. Abdel-Aty H, Boye P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 2005;45:1815–1822.

    Article  PubMed  Google Scholar 

  59. Mahrholdt H, Wagner A, Judd RM, et al. Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 2005;26:1461–1474.

    Article  PubMed  Google Scholar 

  60. Assomull RG, Prasad SK, Lyne J, et al. Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 2006;48:1977–1985.

    Article  PubMed  Google Scholar 

  61. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 2009;53:1475–1487.

    Article  PubMed  Google Scholar 

  62. Noutsias M, Kühl U, Lassner D, et al. Parvovirus B19-associated active myocarditis with biventricular thrombi — results of endomyocardial biopsy investigations and cardiac magnetic resonance imaging. Circulation 2007;115:e378–380.

    Article  PubMed  Google Scholar 

  63. Zagrosek A, Wassmuth R, Abdel-Aty H, et al. Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis — a CMR study. J Cardiovasc Magn Reson 2008;10:19.

    Article  PubMed  Google Scholar 

  64. Hombach V, Merkle N, Torzewski J, et al. Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 2009;30:2011–2018.

    Article  PubMed  Google Scholar 

  65. Zagrosek A, Abdel-Aty H, Boye P, et al. Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. JACC Cardiovasc Imaging 2009;2:131–138.

    Article  PubMed  Google Scholar 

  66. Schulz-Menger J, Maisch B, Abdel-Aty H, et al. Integrated biomarkers in cardiomyopathies: cardiovascular magnetic resonance imaging combined with molecular and immunologic markers — a stepwise approach for diagnosis and treatment. Herz 2007;32:458–472.

    Article  PubMed  Google Scholar 

  67. Braunwald E. Biomarkers in heart failure. N Engl J Med 2008;358:2148–2159.

    Article  CAS  PubMed  Google Scholar 

  68. Dickstein K, Cohen-Solal A, Filippatos G, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur J Heart Fail 2008;10:933–989.

    Article  PubMed  Google Scholar 

  69. von Haehling S, Schefold JC, Lainscak M, et al. Inflammatory biomarkers in heart failure revisited: much more than innocent bystanders. Heart Fail Clin 2009;5:549–560.

    Article  Google Scholar 

  70. Lauer B, Niederau C, Kühl U, et al. Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol 1997;30:1354–1359.

    Article  CAS  PubMed  Google Scholar 

  71. Ammann P, Naegeli B, Schuiki E, et al. Long-term outcome of acute myocarditis is independent of cardiac enzyme release. Int J Cardiol 2003;89:217–222.

    PubMed  Google Scholar 

  72. Freixa X, Sionis A, Castel A, et al. Low troponin-I levels on admission are associated with worse prognosis in patients with fulminant myocarditis. Transplant Proc 2009;41:2234–2236.

    Article  CAS  PubMed  Google Scholar 

  73. Levine B, Kalman J, Mayer L, et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 1990;323:236–241.

    Article  CAS  PubMed  Google Scholar 

  74. Rauchhaus M, Coats AJ, Anker SD. The endotoxin-lipoprotein hypothesis. Lancet 2000;356:930–933.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Noutsias FESC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noutsias, M., Pankuweit, S. & Maisch, B. Biomarkers in Inflammatory and Noninflammatory Cardiomyopathy. Herz 34, 614–623 (2009). https://doi.org/10.1007/s00059-009-3318-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-009-3318-2

Key Words:

Schlüsselwörter:

Navigation