Skip to main content
Log in

Risk Stratification in Electrical Cardiomyopathies

Risikostratifizierung bei elektrischen Kardiomyopathien

  • Published:
Herz Kardiovaskuläre Erkrankungen Aims and scope Submit manuscript

Abstract

Electrical cardiomyopathies contain the long QT syndrome (LQTS), the short QT syndrome (SQTS), the Brugada syndrome, and the catecholaminergic polymorphic ventricular tachycardia (CPVT). Patients diagnosed with an electrical cardiomyopathy have an increased risk of syncope and sudden cardiac death (SCD). Usually, we are dealing with young patients or even children. The prevalence of these diseases is low. No large prospective randomized studies exist with respect to outcome based on different clinical and genetic parameters. Thus, risk stratification in these patients is based on retrospective data from single- or multicenter registries.

The implantable cardioverter defibrillator is the only reliable therapy in patients with Brugada syndrome and SQTS, as no pharmacological therapy has been proven to prevent SCD. In LQTS and CPVT, the primary therapy relies on β-blockers. In high-risk patients, the ICD is indicated.

In all electrical diseases, risk stratification is based on the clinical phenotype, including the electrocardiogram, the history of unexplained or disease-related syncope, and sudden cardiac arrest. In LQTS and CPVT, demographic data like age and gender are important factors for risk stratification. The genotype contributes to risk stratification only in LQTS and CPVT.

Patients with electrical cardiomyopathies have to be risk-stratified individually based on the data and the current guidelines available.

Zusammenfassung

Elektrische Kardiomyopathien umfassen das Long-QTSyndrom (LQTS), das Short-QT-Syndrom (SQTS), das Brugada-Syndrom und die katecholaminerge polymorphe ventrikuläre Tachykardie (CPVT). Patienten mit diesen Krankheitsbildern haben ein erhöhtes Risiko für Synkopen und den plötzlichen Herztod (SCD). Nach der Diagnose stellt die Risikostratifizierung bei den zumeist sehr jungen Patienten eine besondere Herausforderung dar. Aufgrund der Seltenheit der Erkrankungen und der zumeist nur relativ kurzen Nachbeobachtungszeiten stützt sich die Risikostratifizierung nicht auf große randomisierte Studien, sondern auf retrospektive Registerdaten.

Zur Verhinderung des SCD stellt der implantierbare Kardioverter-Defibrillator (ICD) bei Patienten mit Brugada-Syndrom und SQTS die einzig erwiesene Therapieoption dar. Beim LQTS und bei der CPVT besteht die Therapie primär aus einem β-Blocker. Bei Patienten mit hohem Risiko ist ebenfalls die ICD-Therapie indiziert.

Die Risikostratifizierung basiert bei allen Erkrankungen auf dem klinischen Phänotyp, bestehend aus dem Grad der elektrokardiographischen Manifestation, der Anamnese für Synkopen oder einen überlebten SCD und vereinzelt demographischen Daten wie Alter und Geschlecht. Bei der CPVT und dem LQTS trägt auch der Genotyp zur Risikostratifizierung bei.

Aufgrund des erhöhten Risikos eines SCD der häufig jungen Patienten ist eine individuelle Risikostratifizierung anhand der aktuellen Daten und Leitlinien wichtig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schimpf R, Veltmann C, Wolpert C, et al. Channelopathies: Brugada syndrome, long QT syndrome, short QT syndrome, and CPVT. Herz 2009;34:281–288.

    PubMed  Google Scholar 

  2. Zipes DP, Camm AJ, Borggrefe M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop Guidelines for Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death). J Am Coll Cardiol. 2006;48:e247–e346.

    Article  PubMed  Google Scholar 

  3. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome: a prospective international study. Circulation 1985;71:17–21.

    CAS  PubMed  Google Scholar 

  4. Moss AJ, Schwartz PJ, Crampton RS, et al. The long QT syndrome. Prospective longitudinal study of 328 families. Circulation 1991;84:1136–1144.

    CAS  PubMed  Google Scholar 

  5. Goldenberg I, Moss AJ. Long QT syndrome. J Am Coll Cardiol 2008;51:2291–2300.

    Article  PubMed  Google Scholar 

  6. Priori SG, Schwartz PJ, Napolitano C, et al. Risk stratification in the long-QT syndrome. N Engl J Med 2003;348:1866–1874.

    Article  PubMed  Google Scholar 

  7. Goldenberg I, Moss AJ, Peterson DR, et al. Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation 2008;117:2184–2191.

    Article  PubMed  Google Scholar 

  8. Hobbs JB, Peterson DR, Moss AJ, et al. Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA 2006;296:1249–1254.

    Article  CAS  PubMed  Google Scholar 

  9. Sauer AJ, Moss AJ, McNitt S, et al. Long QT syndrome in adults. J Am Coll Cardiol 2007;49:329–337.

    Article  PubMed  Google Scholar 

  10. Goldenberg I, Moss AJ, Bradley J, et al. Long-QT syndrome after age 40. Circulation 2008;117:2192–2201.

    Article  PubMed  Google Scholar 

  11. Goldenberg I, Mathew J, Moss AJ, et al. Corrected QT variability in serial electrocardiograms in long QT syndrome: the importance of the maximum corrected QT for risk stratification. J Am Coll Cardiol 2006;48:1047–1052.

    Article  PubMed  Google Scholar 

  12. Locati EH, Zareba W, Moss AJ, et al. Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the International LQTS Registry. Circulation 1998;97:2237–2244.

    CAS  PubMed  Google Scholar 

  13. Zareba W, Moss AJ, Locati EH, et al. Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. J Am Coll Cardiol 2003;42:103–109.

    Article  PubMed  Google Scholar 

  14. Tester DJ, Will ML, Haglund CM, et al. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005;2:507–517.

    Article  PubMed  Google Scholar 

  15. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102:1178–1185.

    CAS  PubMed  Google Scholar 

  16. Zareba W, Moss AJ, Schwartz PJ, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med 1998;339:960–965.

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz PJ, Priori SG, Spazzolini C, et al. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001;103:89–95.

    CAS  PubMed  Google Scholar 

  18. Priori SG, Napolitano C, Schwartz PJ, et al. Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 2004;292:1341–1344.

    Article  CAS  PubMed  Google Scholar 

  19. Moss AJ, Shimizu W, Wilde AA, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation 2007;115:2481–2489.

    Article  CAS  PubMed  Google Scholar 

  20. Jons C, Moss AJ, Lopes CM, et al. Mutations in conserved amino ccids in the KCNQ1 channel and risk of cardiac events in type-1 long-QT syndrome. J Cardiovasc Electrophysiol 2009;20:859–865.

    Article  PubMed  Google Scholar 

  21. Moss AJ, Zareba W, Kaufman ES, et al. Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 2002;105:794–799.

    Article  CAS  PubMed  Google Scholar 

  22. Bhandari AK, Shapiro WA, Morady F, et al. Electrophysiologic testing in patients with the long QT syndrome. Circulation 1985;71:63–71.

    CAS  PubMed  Google Scholar 

  23. Kaufman ES, McNitt S, Moss AJ, et al. Risk of death in the long QT syndrome when a sibling has died. Heart Rhythm 2008;5:831–836.

    Article  PubMed  Google Scholar 

  24. Gussak I, Brugada P, Brugada J, et al. Idiopathic short QT interval: a new clinical syndrome? Cardiology 2000;94:99–102.

    Article  CAS  PubMed  Google Scholar 

  25. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: a familial cause of sudden death. Circulation 2003;108:965–970.

    Article  PubMed  Google Scholar 

  26. Wolpert C, Schimpf R, Veltmann C, et al. [Short QT syndrome.] Herz 2007;32:206–210.

    Article  PubMed  Google Scholar 

  27. Anttonen O, Junttila MJ, Rissanen H, et al. Prevalence and prognostic significance of short QT interval in a middle-aged Finnish population. Circulation 2007;116:714–720.

    Article  CAS  PubMed  Google Scholar 

  28. Funada A, Hayashi K, Ino H, et al. Assessment of QT intervals and prevalence of short QT syndrome in Japan. Clin Cardiol 2008;31:270–274.

    Article  PubMed  Google Scholar 

  29. Viskin S. The QT interval: too long, too short or just right. Heart Rhythm 2009;6:711–715.

    Article  PubMed  Google Scholar 

  30. Gallagher MM, Magliano G, Yap YG, et al. Distribution and prognostic significance of QT intervals in the lowest half centile in 12,012 apparently healthy persons. Am J Cardiol 2006;98:933–935.

    Article  PubMed  Google Scholar 

  31. Brugada R, Hong K, Dumaine R, et al. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 2004;109:30–35.

    Article  CAS  PubMed  Google Scholar 

  32. Bellocq C, van Ginneken AC, Bezzina CR, et al. Mutation in the KCNQ1 gene leading to the short QT-interval syndrome. Circulation 2004;109:2394–2397.

    Article  PubMed  Google Scholar 

  33. Priori SG, Pandit SV, Rivolta I, et al. A novel form of short QT syndrome (SQT3) is caused by a mutation in the KCNJ2 gene. Circ Res 2005;96:800–807.

    Article  CAS  PubMed  Google Scholar 

  34. Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 2007;115:442–449.

    Article  PubMed  Google Scholar 

  35. Giustetto C, Di Monte F, Wolpert C, et al. Short QT syndrome: clinical findings and diagnostic-therapeutic implications. Eur Heart J 2006;27:2440–2447.

    Article  PubMed  Google Scholar 

  36. Gaita F, Giustetto C, Bianchi F, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol 2004;43:1494–1499.

    Article  CAS  PubMed  Google Scholar 

  37. Schimpf R, Bauersfeld U, Gaita F, et al. Short QT syndrome: successful prevention of sudden cardiac death in an adolescent by implantable cardioverter-defibrillator treatment for primary prophylaxis. Heart Rhythm 2005;2:416–417.

    Article  PubMed  Google Scholar 

  38. Eckardt L, Probst V, Smits JP, et al. Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 2005;111:257–263.

    Article  PubMed  Google Scholar 

  39. Brugada J, Brugada R, Brugada P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation 2003;108:3092–3096.

    Article  PubMed  Google Scholar 

  40. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 2002;105:1342–1347.

    Article  PubMed  Google Scholar 

  41. Giustetto C, Drago S, Demarchi PG, et al. Risk stratification of the patients with Brugada type electrocardiogram: a community-based prospective study. Europace 2009;11:507–513.

    Article  PubMed  Google Scholar 

  42. Probst V, Gaita F, Veltmann C, et al. Long-term prognosis of Brugada syndrome patients: results from the FINGER registry. Heart Rhythm 2009;5:Suppl:S93.

    Google Scholar 

  43. Gehi AK, Duong TD, Metz LD, et al. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J Cardiovasc Electrophysiol 2006;17:577–583.

    Article  PubMed  Google Scholar 

  44. Veltmann C, Schimpf R, Echternach C, et al. A prospective study on spontaneous fluctuations between diagnostic and non—diagnostic ECGs in Brugada syndrome: implications for correct phenotyping and risk stratification. Eur Heart J 2006;27:2544–2552.

    Article  PubMed  Google Scholar 

  45. Castro Hevia J, Antzelevitch C, Tornes Barzaga F, et al. Tpeak-Tend and Tpeak-Tend dispersion as risk factors for ventricular tachycardia/ventricular fibrillation in patients with the Brugada syndrome. J Am Coll Cardiol 2006;47:1828–1834.

    Article  Google Scholar 

  46. Babai Bigi MA, Aslani A, Shahrzad S. aVR sign as a risk factor for life-threatening arrhythmic events in patients with Brugada syndrome. Heart Rhythm 2007;4:1009–1012.

    Article  PubMed  Google Scholar 

  47. Junttila MJ, Brugada P, Hong K, et al. Differences in 12-lead electrocardiogram between symptomatic and asymptomatic Brugada syndrome patients. J Cardiovasc Electrophysiol 2008;19:380–383.

    Article  PubMed  Google Scholar 

  48. Tada T, Kusano KF, Nagase S, et al. Clinical significance of macroscopic T-wave alternans after sodium channel blocker administration in patients with Brugada syndrome. J Cardiovasc Electrophysiol 2008;19:56–61.

    Article  PubMed  Google Scholar 

  49. Pitzalis MV, Anaclerio M, Iacoviello M, et al. QT-interval prolongation in right precordial leads: an additional electrocardiographic hallmark of Brugada syndrome. J Am Coll Cardiol 2003;42:1632–1637.

    Article  PubMed  Google Scholar 

  50. Fish JM, Antzelevitch C. Cellular mechanism and arrhythmogenic potential of T-wave alternans in the Brugada syndrome. J Cardiovasc Electrophysiol 2008;19:301–308.

    Article  PubMed  Google Scholar 

  51. Antzelevitch C, Brugada P, Borggrefe M, et al. Brugada syndrome: report of the second consensus conference. Heart Rhythm 2005;2:429–440.

    Article  PubMed  Google Scholar 

  52. Benito B, Sarkozy A, Mont L, et al. Gender differences in clinical manifestations of Brugada syndrome. J Am Coll Cardiol 2008;52:1567–1573.

    Article  PubMed  Google Scholar 

  53. London B, Michalec M, Mehdi H, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 2007;116:2260–2268.

    Article  CAS  PubMed  Google Scholar 

  54. Weiss R, Barmada MM, Nguyen T, et al. Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation 2002;105:707–713.

    Article  CAS  PubMed  Google Scholar 

  55. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293–296.

    Article  CAS  PubMed  Google Scholar 

  56. Watanabe H, Koopmann TT, Le Scouarnec S, et al. Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans. J Clin Invest 2008;118:2260–2268.

    CAS  PubMed  Google Scholar 

  57. Priori SG, Napolitano C, Gasparini M, et al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 2000;102:2509–2515.

    CAS  PubMed  Google Scholar 

  58. Schulze-Bahr E, Eckardt L, Breithardt G, et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 2003;21:651–652.

    Article  PubMed  Google Scholar 

  59. Hong K, Brugada J, Oliva A, et al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation 2004;110:3023–3027.

    Article  PubMed  Google Scholar 

  60. Meregalli PG, Ruijter JM, Hofman N, et al. Diagnostic value of flecainide testing in unmasking SCN5A-related Brugada syndrome. J Cardiovasc Electrophysiol 2006;17:857–864.

    Article  PubMed  Google Scholar 

  61. Veltmann C, Wolpert C, Sacher F, et al. Response to intravenous ajmaline: a retrospective analysis of 677 ajmaline challenges. Europace 2009;11:1345–1352.

    Article  PubMed  Google Scholar 

  62. Poelzing S, Forleo C, Samodell M, et al. SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene. Circulation 2006;114:368–376.

    Article  CAS  PubMed  Google Scholar 

  63. Viswanathan PC, Benson DW, Balser JR. A common SCN5A polymorphism modulates the biophysical effects of an SCN5A mutation. J Clin Invest 2003;111:341–346.

    CAS  PubMed  Google Scholar 

  64. Lizotte E, Junttila MJ, Dube MP, et al. Genetic modulation of Brugada syndrome by a common polymorphism. J Cardiovasc Electrophysiol 2009:in press (Epub 2009 Jun 22).

  65. Benito B, Compuzano O, Ishac R, et al. Role of genetic testing in risk stratification of Brugada syndrome. Heart Rhythm 2009;5:Suppl:S102.

    Google Scholar 

  66. Brugada P, Geelen P, Brugada R, et al. Prognostic value of electrophysiologic investigations in Brugada syndrome. J Cardiovasc Electrophysiol 2001;12:1004–1007.

    Article  CAS  PubMed  Google Scholar 

  67. Brugada P, Brugada R, Mont L, et al. Natural history of Brugada syndrome: the prognostic value of programmed electrical stimulation of the heart. J Cardiovasc Electrophysiol 2003;14:455–457.

    Article  PubMed  Google Scholar 

  68. Priori SG, Napolitano C. Should patients with an asymptomatic Brugada electrocardiogram undergo pharmacological and electrophysiological testing? Circulation 2005;112:279–292, discussion 279–92.

    Article  PubMed  Google Scholar 

  69. Brugada P, Brugada R, Brugada J. Should patients with an asymptomatic Brugada electrocardiogram undergo pharmacological and electrophysiological testing? Circulation 2005;112:279–292, discussion 279–92.

    Article  PubMed  Google Scholar 

  70. Paul M, Gerss J, Schulze-Bahr E, et al. Role of programmed ventricular stimulation in patients with Brugada syndrome: a meta-analysis of worldwide published data. Eur Heart J 2007;28:2126–2133.

    Article  PubMed  Google Scholar 

  71. Hayashi M, Denjoy I, Extramiana F, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation 2009;119:2426–2434.

    Article  CAS  PubMed  Google Scholar 

  72. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002;106:69–74.

    Article  CAS  PubMed  Google Scholar 

  73. Leenhardt A, Lucet V, Denjoy I, et al. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 1995;91:1512–1519.

    CAS  PubMed  Google Scholar 

  74. Sumitomo N, Harada K, Nagashima M, et al. Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 2003;89:66–70.

    Article  CAS  PubMed  Google Scholar 

  75. Postma AV, Denjoy I, Kamblock J, et al. Catecholaminergic polymorphic ventricular tachycardia: RYR2 mutations, bradycardia, and follow up of the patients. J Med Genet 2005;42:863–870.

    Article  CAS  PubMed  Google Scholar 

  76. Postma AV, Denjoy I, Hoorntje TM, et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res 2002;91:e21–e26.

    Article  CAS  PubMed  Google Scholar 

  77. Wilde AA, Bhuiyan ZA, Crotti L, et al. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia. N Engl J Med 2008;358:2024–2029.

    Article  CAS  PubMed  Google Scholar 

  78. Priori SG, Napolitano C, Tiso N, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001;103:196–200.

    CAS  PubMed  Google Scholar 

  79. Laitinen PJ, Brown KM, Piippo K, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation 2001;103:485–490.

    CAS  PubMed  Google Scholar 

  80. Lahat H, Eldar M, Levy-Nissenbaum E, et al. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation 2001;103:2822–2827.

    CAS  PubMed  Google Scholar 

  81. Liu N, Colombi B, Raytcheva-Buono EV, et al. Catecholaminergic polymorphic ventricular tachycardia. Herz 2007;32:212–217.

    Article  PubMed  Google Scholar 

  82. Watanabe H, Chopra N, Laver D, et al. Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 2009;15:380–383.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Veltmann MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veltmann, C., Schimpf, R., Borggrefe, M. et al. Risk Stratification in Electrical Cardiomyopathies. Herz 34, 518–527 (2009). https://doi.org/10.1007/s00059-009-3288-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-009-3288-4

Key Words:

Schlüsselwörter:

Navigation