Skip to main content
Log in

Die perkutane Mitralklappenanuloplastie mittels des VIACOR™-Koronarsinussystems zur Behandlung der funktionellen Mitralklappeninsuffizienz bei Herzinsuffizienz

Entwicklung und Ergebnisse

Percutaneous Mitral Annuloplasty with the VIACOR™ Coronary Sinus System for the Treatment of Functional Mitral Regurgitation in Heart Failure Patients. Development and Results

  • Published:
Herz Kardiovaskuläre Erkrankungen Aims and scope Submit manuscript

Zusammenfassung

Die funktionelle Mitralinsuffizienz („mitral regurgitation“ [MR]) bei Patienten mit eingeschränkter linksventrikulärer Funktion und klinischen Zeichen der Herzinsuffizienz limitiert das Überleben in Abhängigkeit vom Schweregrad der Erkrankung. Auch eine geringe MR verdoppelt das Mortalitätsrisiko. Berichtet wird über die Anwendung eines Koronarsinussystems zur Reduktion der Dimension des Mitralklappenanulus mit dem Ziel, die Kompetenz der Mitralklappe wiederherzustellen. Das System (PTMA™, Viacor, Inc. Wilmington, MA, USA) besteht aus einem Multilumen- PTFE-(Teflon-)PTMA-Katheter, in den Nitinolstäbe (Nickel-Titan-Legierung) zur Therapie eingebracht werden. Für die individuelle Behandlung können bis zu drei Nitinolstäbe unterschiedlicher Länge und Steifigkeit benutzt werden. Damit kann die Reduktion der Dimension in inkrementellen Schritten erfolgen. Fluoroskopie und dreidimensionale (3-D) Echokardiographie werden während der Prozedur durchgeführt, um die Positionierung zu kontrollieren und den maximalen Behandlungseffekt anzuzeigen. Diese Arbeit beschreibt einen Fall und berichtet über die Sicherheit und Anwendbarkeit des neuen Systems bei 27 Patienten. Die Fälle reflektieren die Lernkurve bezüglich des Designs des Systems und der Implantationstechnik. Bei der Anwendung des permanenten Implantationssystems konnte eine anhaltende Reduktion der septal-lateralen Dimension des Mitral klappen anulus mittels 3-D-Echokardiographie dokumentiert werden (4,9 ± 1,2 mm nach 3 Monaten)

Abstract

Functional mitral regurgitation (MR) in heart failure patients limits survival in a severity-graded fashion. Even mild MR doubles the mortality risk. The use of a nonstented coronary sinus device to reduce mitral annulus dimension in order to reestablish mitral valve competence is reported. The device (PTMA™, Viacor, Inc., Wilmington, MA, USA) consists of a multilumen PTFE (Teflon) PTMA catheter in which nitinol (nickel-titanium alloy) treatment rods are advanced. For individual treatment, up to three rods of different length and stiffness can be used. Therefore, dimension reduction can be performed in an incremental fashion. Fluoroscopy and three-dimensional (3-D) echocardiography are performed through the procedure to visualize the positioning and confirm maximum treatment effect. This report describes an implant case and summarizes the safety and feasibility of the new PTMA treatment device in 27 patients. The cases reflect the learning curve in both device design and implantation technique. In permanent implant, a sustained reduction of mitral annulus septal-lateral dimension from 3-D echo reconstruction dimensions was observed (4.9 ± 1.2 mm at 3 months).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Babaliaros V, Block P. State of the art percutaneous intervention for the treatment of valvular heart disease: a review of the current technologies and ongoing research in the field of percutaneous valve replacement and repair. Cardiology 2006;107:87–96.

    Article  PubMed  Google Scholar 

  2. Block PC. Percutaneous mitral valve repair for mitral regurgitation. J Interv Cardiol 2003;16:93–6.

    Article  PubMed  Google Scholar 

  3. Bonow RO, Carabello BA, de Leon AC Jr, et al. ACC/AHA guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients with Valvular Heart Disease). J Am Coll Cardiol 1998;32:1486–588.

    Article  Google Scholar 

  4. Bursi F, Enriquez-Sarano M, Nkomo VT, et al. Heart failure and death after myocardial infarction in the community: the emerging role of mitral regurgitation. Circulation 2005;111:295–301.

    Article  PubMed  Google Scholar 

  5. Calafiore AM, Di Mauro M, Gallina S, et al. Mitral valve surgery for chronic ischemic mitral regurgitation. Ann Thorac Surg 2004;77:1989–97.

    Article  PubMed  Google Scholar 

  6. Choure AJ, Garcia MJ, Hesse B, et al. In vivo analysis of the anatomical relationship of coronary sinus to mitral annulus and left circumflex coronary artery using cardiac multidetector computed tomography: implications for percutaneous coronary sinus mitral annuloplasty. J Am Coll Cardiol 2006;48:1938–45.

    Article  PubMed  Google Scholar 

  7. Daimon M, Fukuda S, Adams DH, et al. Mitral valve repair with Carpentier-McCarthy-Adams IMR ETlogix annuloplasty ring for ischemic mitral regurgitation: early echocardiographic results from a multi-center study. Circulation 2006;114:Suppl:I588–93.

    Article  PubMed  Google Scholar 

  8. Daimon M, Shiota T, Gillinov AM, et al. Percutaneous mitral valve repair for chronic ischemic mitral regurgitation. A real-time three-dimensional echocardiographic study in an ovine model. Circulation 2005;111:2183–9.

    Article  PubMed  Google Scholar 

  9. Dubreuil O, Basmadjian A, Ducharme A, et al. Percutaneous mitral valve annuloplasty for ischemic mitral regurgitation: first in man experience with a temporary implant. Cathet Cardiovasc Interv 2007;69:1053–61.

    Article  Google Scholar 

  10. Enriquez-Sarano M, Loulmet DF, Burkhoff D. The conundrum of functional mitral regurgitation in chronic heart failure. J Am Coll Cardiol 2008;51:487–9.

    Article  PubMed  Google Scholar 

  11. Feldman T, Leon MB. Prospects for percutaneous valve therapies. Circulation 2007;116:2866–77.

    Article  PubMed  Google Scholar 

  12. Feldman T, Wasserman HS, Herrmann HC, et al. Percutaneous mitral valve repair using the edge-to-edge technique: six-month results of the EVEREST phase I clinical trial. J Am Coll Cardiol 2005;46:2134–40.

    Article  PubMed  Google Scholar 

  13. Goitein O, Lacomis JM, Gorcsan J 3rd, et al. Left ventricular pacing lead implantation: potential utility of multimodal image integration. Heart Rhythm 2006;3:91–4.

    Article  PubMed  Google Scholar 

  14. Grossi EA, Woo YJ, Schwartz CF, et al. Comparison of Coapsys annuloplasty and internal reduction mitral annuloplasty in the randomized treatment of functional ischemic mitral regurgitation: impact on the left ventricle. J Thorac Cardiovasc Surg 2006;131:1095–8.

    Article  PubMed  CAS  Google Scholar 

  15. Lamas GA, Mitchell GF, Flaker GC, et al. Clinical significance of mitral regurgitation after acute myocardial infarction. Survival and Ventricular Enlargement Investigators. Circulation 1997;96:827–33.

    PubMed  CAS  Google Scholar 

  16. Lancellotti P, Pierard LA. Chronic ischaemic mitral regurgitation: exercise testing reveals its dynamic component. Eur Heart J 2005;26:1816–7.

    Article  PubMed  Google Scholar 

  17. Lancellotti P, Troisfontaines P, Toussaint AC, et al. Prognostic importance of exercise-induced changes in mitral regurgitation in patients with chronic ischemic left ventricular dysfunction. Circulation 2003;108:1713–7.

    Article  PubMed  Google Scholar 

  18. Lapu-Bula R, Robert A, Van Craeynest D, et al. Contribution of exercise-induced mitral regurgitation to exercise stroke volume and exercise capacity in patients with left ventricular systolic dysfunction. Circulation 2002;106:1342–8.

    Article  PubMed  Google Scholar 

  19. Levine RA, Schwammenthal E. Ischemic mitral regurgitation on the threshold of a solution: from paradoxes to unifying concepts. Circulation 2005;112:745–58.

    Article  PubMed  Google Scholar 

  20. Otto CM. Clinical practice. Evaluation and management of chronic mitral regurgitation. N Engl J Med 2001;345:740–6.

    Article  PubMed  CAS  Google Scholar 

  21. Otto CM, Salerno CT. Timing of surgery in asymptomatic mitral regurgitation. N Engl J Med 2005;352:928–9.

    Article  PubMed  CAS  Google Scholar 

  22. Pierard LA, Lancellotti P. The role of ischemic mitral regurgitation in the pathogenesis of acute pulmonary edema. N Engl J Med 2004;351:1627–34.

    Article  PubMed  CAS  Google Scholar 

  23. Sack S, Kahlert P, Bilodeau L, et al. Percutaneous transvenous mitral annuloplasty: initial human experiences with a novel coronary sinus implant device. Circ Cardiovasc Intervent 2009;2:277–84.

    Article  Google Scholar 

  24. Sack S, Kahlert P, Erbel R. Percutaneous mitral valve: a non-stented coronary sinus device for the treatment of functional mitral regurgitation in heart failure patients. Minim Invasive Ther Allied Technol 2009;1:156–63.

    Article  Google Scholar 

  25. Srichai MB, Grimm RA, Stillman AE, et al. Ischemic mitral regurgitation: impact of the left ventricle and mitral valve in patients with left ventricular systolic dysfunction. Ann Thorac Surg 2005;80:170–8.

    Article  PubMed  Google Scholar 

  26. Stoddard MF, Prince CR, Dillon S, et al. Exercise-induced mitral regurgitation is a predictor of morbid events in subjects with mitral valve prolapse. J Am Coll Cardiol 1995;25:693–9.

    Article  PubMed  CAS  Google Scholar 

  27. Tops LF, Van de Veire NR, Schuifj JD, et al. Noninvasive evaluation of coronary sinus anatomy and its relation to the mitral valve annulus: implications for percutaneous mitral annuloplasty. Circulation 2007;115:1426–32.

    Article  PubMed  Google Scholar 

  28. Trichon BH, Felker GM, Shaw LK, et al. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am J Cardiol 2003;91:538–43.

    Article  PubMed  Google Scholar 

  29. Trichon BH, Glower DD, Shaw LK, et al. Survival after coronary revascularization, with and without mitral valve surgery, in patients with ischemic mitral regurgitation. Circulation 2003;108:Suppl 1:II103–10.

    PubMed  Google Scholar 

  30. Tübler T. Initial experience with the cardiac dimensions device (CARILLON). Catheter interventions in congenital & structural heart disease, 99th International Workshop, Frankfurt, June 8–10, 2005.

  31. Van de Veire NR, Schuijf JD, De Sutter J, et al. Non-invasive visualization of the cardiac venous system in coronary artery disease patients using 64-slice computed tomography. J Am Coll Cardiol 2006;48:1832–8.

    Article  PubMed  Google Scholar 

  32. Webb JG, Harnek J, Munt BI, et al. Percutaneous transvenous mitral annuloplasty: initial human experience with device implantation in the coronary sinus. Circulation 2006;113:851–5.

    Article  PubMed  Google Scholar 

  33. Yacoub MH, Cohn LH. Novel approaches to cardiac valve repair: from structure to function: part I. Circulation 2004;109:942–50.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Sack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sack, S. Die perkutane Mitralklappenanuloplastie mittels des VIACOR™-Koronarsinussystems zur Behandlung der funktionellen Mitralklappeninsuffizienz bei Herzinsuffizienz. Herz 34, 468–476 (2009). https://doi.org/10.1007/s00059-009-3287-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-009-3287-5

Schlüsselwörter:

Key Words:

Navigation