Skip to main content
Log in

Effect of EMD on the orthodontically induced root resorption repair process in rats

Auswirkung eines Schmelzmatrixproteins auf reparative Prozesse nach orthodontisch induzierter Wurzelresorption im Rattenmodell

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

A Correction to this article was published on 29 March 2022

This article has been updated

Abstract

Background

While different levels of root resorption may occur in orthodontic treatment, several preventive approaches have been reported. Nevertheless, little is known about the effect of enamel matrix derivative (EMD) on root repair during orthodontic tooth movement.

Objective

To evaluate the effect of EMD on root resorption repair following the application of orthodontic force.

Materials and methods

A force of 100 g was exerted for 14 days on the left maxillary first molars of twenty 10-week-old Sprague-Dawley rats divided into the EMD and control groups (n = 10 per group). In the EMD group, repeatedly injection of Emdogain® was administered after the appliance was removed, while phosphate-buffered saline was administered in the control group. In vivo microcomputed tomography (CT), haematoxylin and eosin (H&E) staining, and immunohistochemistry were then used to evaluate the effect of EMD on the process of root repair.

Results

In the EMD group, the observed decrease in root resorption crater volume and increase in both the bone volume fraction and trabecular thickness were significantly greater than those in the control group. H&E staining showed that the periodontal fibres were relatively regular in arrangement and that the surface of the cementum was smooth in the EMD group. Immunohistochemical analysis showed higher bone morphogenetic protein 2 (BMP-2) and bone sialoprotein (BSP) expression levels in the EMD group than in the control group. In addition, the osteoprotegerin (OPG) and receptor activator of NF-κB ligand (RANKL) expression levels were similar in both groups.

Conclusion

EMD enhanced the repair process following orthodontically induced root resorption in rats.

Zusammenfassung

Hintergrund

Während einer kieferorthopädischen Behandlung kann es zu Wurzelresorptionen unterschiedlichen Ausmaßes kommen, wobei verschiedene präventive Strategien bereits diskutiert wurden. Dennoch ist bisher wenig über die Auswirkungen von Schmelzmatrixderivat (EMD) auf die Wurzelreparation während einer kieferorthopädisch induzierten Zahnbewegung bekannt.

Ziel

Evaluierung der Effekte von EMD auf die Reparation von Wurzelresorptionen nach kieferorthopädischer Krafteinwirkung.

Material und Methoden

Vierzehn Tage lang wurde eine Kraft von 100 g auf die ersten Oberkiefermolaren links von 10 Wochen alten Sprague-Dawley-Ratten (n = 20) aufgebracht. Die Tiere waren auf eine EMD- und eine Kontrollgruppe aufgeteilt (jeweils n = 10). Bei den Tieren der EMD-Gruppe wurde nach Entfernung der Apparatur wiederholt Emdogain® appliziert, den Kontrolltieren phosphatgepufferte NaCl-Lösung. Um anschließend den EMD-Effekt auf den Reparationsprozess zu evaluieren, erfolgten Untersuchungen mit In-vivo-Mikrocomputertomographie, HE(Hämatoxylin-Eosin)-Färbung und Immunhistochemie.

Ergebnisse

In der EMD-Gruppe ließen sich im Vergleich mit der Kontrollgruppe folgende signifikante Unterschiede nachweisen: kleinere Wurzelresorptionskrater und ein höheres Volumen sowohl des Knochenanteils als auch des trabekulären Knochens. In den HE-gefärbten Schnitten ließen sich relativ regulär verlaufende / angeordnete Parodontalfasern und eine glatte Zementoberfläche in der EMD-Gruppe erkennen. Die immunhistochemische Analyse zeigte im Vergleich zur Kontrollgruppe höhere BMP(“bone morphogenetic protein)-2- und BSP(“bone sialoprotein”)-Expression in der EMD-Gruppe. Die Expression von OPG (Osteoprotegerin) und RANKL (“receptor activator of NF-κB ligand”) war dagegen in beiden Gruppen vergleichbar.

Schlussfolgerung

Im hier vorgestellten Rattenmodell ließ sich nachweisen, dass EMD die reparativen Prozesse nach kieferorthopädisch induzierter Wurzelresorption begünstigte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2
Fig. 3 Abb. 3
Fig. 4 Abb. 4
Fig. 5 Abb. 5
Fig. 6 Abb. 6

Similar content being viewed by others

Change history

References

  1. Aberg T, Wozney J, Thesleff I (1997) Expression pattern of bone morphogenetic Proteins (BMPs) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Dev Dyn 210(4):383–396. https://doi.org/10.1002/(SICI)1097-0177(199712)210:4<383::AID-AJA3>3.0.CO;2-C

    Article  PubMed  Google Scholar 

  2. Araújo M, Hayacibara R, Sonohara M et al (2003) Effect of enamel matrix proteins (Emdogain) on healing after re-implantation of ‘periodontally compromised’ roots. An experimental study in the dog. J Clin Periodontol 30(10):855–861. https://doi.org/10.1034/j.1600-051X.2003.00400.x

    Article  PubMed  Google Scholar 

  3. Barka T, Anderson PJ (1962) Histochemical methods for acid phosphatase using hexazonium pararosanilian as coupler. J Histochem Cytochem10(6):741–753. https://doi.org/10.1177/10.6.741

    Article  Google Scholar 

  4. Bosshardt DD, Nanci A (2004) Hertwig’s epithelial root sheath, enamel matrix proteins, and initiation of cementogenesis in porcine teeth. J Clin Periodontol 31(3):184–192. https://doi.org/10.1111/j.0303-6979.2004.00473.x

    Article  PubMed  Google Scholar 

  5. Brezniak N, Wasserstein A (2002) Orthodontically induced inflammatory root resorption. Part I: the basic science aspects. Angle Orthod 72(2):175–179. https://doi.org/10.1043/0003-3219(2002)072<0175:OIIRRP>2.0.CO;2

    Article  PubMed  Google Scholar 

  6. Correa MG, Gomes Campos ML et al (2016) Alcohol intake may impair bone density and new cementum formation after enamel matrix derivative treatment: histometric study in rats. J Periodont Res 51(1):60–69. https://doi.org/10.1111/jre.12279

    Article  Google Scholar 

  7. Franzen TJ, Monjo M, Rubert M et al (2014) Expression of bone markers and micro-CT analysis of alveolar bone during orthodontic relapse. Orthod Craniofac Res 17(4):249–258. https://doi.org/10.1111/ocr.12050

    Article  PubMed  Google Scholar 

  8. Ghoneima AA, Allam ES, Zunt SL et al (2010) Bisphosphonates treatment and orthodontic considerations. Orthod Craniofac Res 13(1):1–10. https://doi.org/10.1111/j.1601-6343.2009.01472.x

    Article  PubMed  Google Scholar 

  9. Gonzales C, Hotokezaka H, Darendeliler AM et al (2010) Repair of root resorption 2 to 16 weeks after the application of continuous forces on maxillary first molars in rats: a 2-and 3‑dimensional quantitative evaluation. Am J Orthod Dentofacial Orthop 137(4):477–485. https://doi.org/10.1016/j.ajodo.2008.05.018

    Article  PubMed  Google Scholar 

  10. Hakki SS, Berry JE, Somerman MJ (2001) The effect of enamel matrix protein derivative on follicle cells in vitro. J Periodontol 72(5):679–687. https://doi.org/10.1902/jop.2001.72.5.679

    Article  PubMed  Google Scholar 

  11. Harris DA, Jones AS, Darendeliler MA (2006) Physical properties of root cementum: part 8. Volumetric analysis of root resorption craters after application of controlled intrusive light and heavy orthodontic forces: a microcomputed tomography scan study. Am J Orthod Dentofacial Orthop 130(5):639–647. https://doi.org/10.1016/j.ajodo.2005.01.029

    Article  PubMed  Google Scholar 

  12. Hasegawa N, Kawaguchi H, Ogawa T et al (2003) Immunohistochemical characteristics of epithelial cell rests of Malassez during cementum repair. J Periodont Res 38(1):51–56. https://doi.org/10.1034/j.1600-0765.2003.01636.x

    Article  Google Scholar 

  13. Haze A, Taylor AL, Haegewald S et al (2009) Regeneration of bone and periodontal ligament induced by recombination amelogenin after periodontitis. J Cell Mol Med 13(6):1110–1124. https://doi.org/10.1111/j.1582-4934.2009.00700.x

    Article  PubMed  PubMed Central  Google Scholar 

  14. He J, King Y, Jiang J et al (2005) Enamel matrix derivative inhibits TNF-alpha-induced apoptosis in osteoblastic MC3T3-E1 cells. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 99(6):761–767. https://doi.org/10.1016/j.tripleo.2004.07.022

    Article  PubMed  Google Scholar 

  15. Heijl L, Heden G, Svärdström G et al (1997) Enamel matrix derivative (EMDOGAIN®) in the treatment of intrabony periodontal defects. J Clin Periodontol 24(9):705–714. https://doi.org/10.1111/j.1600-051X.1997.tb00253.x

    Article  PubMed  Google Scholar 

  16. Hoang AM, Klebe RJ, Steffensen B et al (2002) Amelogenin is a cell adhesion protein. J Dent Res 81(7):497–500. https://doi.org/10.1177/154405910208100713

    Article  PubMed  Google Scholar 

  17. Hu Qin, XU Xiao-lin, Zhou Jian-ping, Dai Hong-wei (2017) Effects of EMD on relapse and root repair after orthodontic tooth movement in rats. Shanghai J Stomatol 26(2):156–161. https://doi.org/10.19439/j.sjos.2017.02.006

  18. Iqbal MK, Bamaas N (2001) Effect of enamel matrix derivative (Emdogain) upon periodontal healing after replantation of permanent incisors in beagle dogs. Dent Traumatol 17(1):36–45. https://doi.org/10.1034/j.1600-9657.2001.170107.x

    Article  PubMed  Google Scholar 

  19. Jäger A, Kunert D, Friesen T, Zhang D, Lossdörfer S, Götz W (2008) Cellular and extracellular factors in earlyroot resorption repair in the rat. Eur J Orthod 30(4):336–345. https://doi.org/10.1093/ejo/cjn012

    Article  PubMed  Google Scholar 

  20. Kemoun P, Laurencin-Dalicieux S, Rue J et al (2007) Human dental follicle cells acquire cementoblast features under stimulation by BMP-2/-7 and enamel matrix derivatives (EMD) in vitro. Cell Tissue Res 329(2):283–294. https://doi.org/10.1007/s00441-007-0397-3

    Article  PubMed  Google Scholar 

  21. King GJ, Fischlschweiger W (1982) The effect of force magnitude on extractable bone resorptive activity and cemental cratering in orthodontic tooth movement. J Dent Res 61(6):775–779. https://doi.org/10.1177/00220345820610062501

    Article  PubMed  Google Scholar 

  22. King GJ, Keeling SD, McCoy EA et al (1991) Measuring dental drift and orthodontic tooth movement response to various initial forces in adult rats. Am J Orthod Dentofacial Orthop 99(5):456–465. https://doi.org/10.1016/S0889-5406(05)81579-3

    Article  PubMed  Google Scholar 

  23. Kirschneck C, Meier M, Bauer K et al (2017) Meloxicam medication reduces orthodontically induced dental root resorption and tooth movement velocity: a combined in vivo and in vitro study of dental-periodontal cells and tissue. Cell Tissue Res 368(1):6178. https://doi.org/10.1007/s00441-016-2553-0

    Article  PubMed  Google Scholar 

  24. Kirschneck C, Wolf M, Reicheneder C et al (2014) Strontium ranelate improved tooth anchorage and reduced root resorption in orthodontic treatment of rats. Eur J Pharmacol 744(5):67–75. https://doi.org/10.1016/j.ejphar.2014.09.039

    Article  PubMed  Google Scholar 

  25. Miron RJ, Dard M, Weinreb M (2015) Enamel matrix derivative, inflammation and soft tissue wound healing. J Periodont Res 50(5):555–569. https://doi.org/10.1111/jre.12245

    Article  Google Scholar 

  26. Montenegro VC, Jones A, Petocz P, Gonzales C et al (2012) Physical properties of root cementum: part 22. Root resorption after the application of light and heavy extrusive orthodontic forces: a microcomputed tomography study. Am J Orthod Dentofacial Orthop 141(1):e1–9. https://doi.org/10.1016/j.ajodo.2011.06.032

    Article  PubMed  Google Scholar 

  27. Nemcovsky CE, Zahavi S, Moses O et al (2006) Effect of enamel matrix protein derivative on healing of surgical supra-infrabony periodontal defects in the rat molar: a histomorphometric study. J Periodontol 77(6):996–1002. https://doi.org/10.1902/jop.2006.050317

    Article  PubMed  Google Scholar 

  28. Owman Moll P, Kurol J (2000) Root resorption after orthodontic treatment in high- and low-risk patients: analysis of allergy as a possible predisposing factor. Eur J Orthod 22(6):657–663. https://doi.org/10.1093/ejo/22.6.657

    Article  PubMed  Google Scholar 

  29. Pitaru S, Pritzki A, Bar-Kana I et al (2002) Bone morphogenetic protein-2 induces the expression of cementum attachment protein in human periodontal ligament clones. Connect Tissue Res 43(2-3):257–264. https://doi.org/10.1080/03008200290001276

    Article  PubMed  Google Scholar 

  30. Preoteasa CT, Ionescu E, Preoteasa E et al (2009) Orthodontically induced root resorption correlated with morphological characteristics. Rom J Morphol Embryol 50(2):257–262. PMID: 19434320. http://www.rjme.ro/RJME/resources/files/500209257262.pdf

    PubMed  Google Scholar 

  31. Ren Y, Maltha JC, Kuijpers-Jagtman AM (2004) The rat as a model for orthodontic tooth movement—a critical review and a proposed solution. Eur J Orthod 26(5):483–490. https://doi.org/10.1093/ejo/26.5.483

    Article  PubMed  Google Scholar 

  32. Reseland JE, Sjur R, Larsen AM et al (2006) The effect of enamel matrix derivative on gene expression in osteoblasts. Eur J Oral Sci 114 Suppl:205–211. https://doi.org/10.1111/j.1600-0722.2006.00333.x

    Article  PubMed  Google Scholar 

  33. Saito A, Saito E, Yoshimura Y et al (2011) Attachment formation after transplantation of teeth cultured with enamel matrix derivative in dogs. J Periodontol 82(10):1462–1468. https://doi.org/10.1902/jop.2011.100596

    Article  PubMed  Google Scholar 

  34. Shirakata Y, Takeuchi N, Yoshimoto T et al (2013) Effects of enamel matrix derivative and basic fbroblast growth factor with μ¬-tricalcium phosphate on periodontal regeneration in one-wall intrabony defects: an experimental study in dogs. Int J Periodontics Restorative Dent 33(5):641–649. https://doi.org/10.11607/prd.0989

    Article  PubMed  Google Scholar 

  35. Sugaya T, Tomita M, Motoki Y et al (2016) Influence of enamel matrix derivative on healing of root surfaces after bonding treatment and intentional replantation of vertically fractured roots. Dent Traumatol 32(5):397–401. https://doi.org/10.1111/edt.12270

    Article  PubMed  Google Scholar 

  36. Takayanagi K, Osawa G, Nakaya H et al (2006) Effects of enamel matrix derivative on bone-related mRNA expression in human periodontal ligament cells in vitro. J Periodontol 77(5):891–898. https://doi.org/10.1902/jop.2006.050244

    Article  PubMed  Google Scholar 

  37. Tanimoto K, Kunimatsu R, Tanne Y et al (2012) Differential effects of amelogenin on mineralization of cementoblasts and periodontal ligament cells. J Periodontol 83(5):672–679. https://doi.org/10.1902/jop.2011.110408

    Article  PubMed  Google Scholar 

  38. Tuna EB, Arai K, Tekkesin MS et al (2015) Effect of fibroblast growth factor and enamel matrix derivative treatment on root resorption after delayed replantation. Dent Traumatol 31(1):49–56. https://doi.org/10.1111/edt.12141

    Article  PubMed  Google Scholar 

  39. Va’zquez-Landaverde LA, Rojas-Huidobro R, Gallegos-Corona AM et al (2002) Periodontal 5-deiodination on forced-induced root resorptionthe protective effect of thyroid hormone administration. Eur J Orthod 24(4):363–369. https://doi.org/10.1093/ejo/24.4.363

    Article  Google Scholar 

  40. Vieira GM, Chaves SB, Ferreira VM et al (2015) The effect of simvastatin on relapse of tooth movement and bone mineral density in rats measured by a new method using microtomography. Acta Cir Bras 30(5):319–327. https://doi.org/10.1590/S0102-865020150050000003

    Article  PubMed  Google Scholar 

  41. Weltman B, Vig KW (2010) Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthod Dentofacial Orthop 137(4):462–476. https://doi.org/10.1016/j.ajodo.2009.06.021

    Article  PubMed  Google Scholar 

  42. Xu X, Zhou J, Yang F et al (2016) Using micro-computed tomography to evaluate the dynamics of orthodontically induced root resorption repair in a rat model. PLoS ONE 11(3):e150135. https://doi.org/10.1371/journal.pone.0150135

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the professors of the Chongqing Key Lab of Stomatology Disease and Biomedicine of Chongqing Medical University for guidance on these experiments.

Funding

Natural Science Foundation of Yubei District Science and Technology Commission, Chongqing, China (2014 (Society), No. 10).

Natural Science Foundation of Yuzhong District Science and Technology Commission, Chongqing, China (2015, No. 16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Dai.

Ethics declarations

Conflict of interest

Q. Hu, J. Zhou, X. Xu and H. Dai declare that they have no competing interests.

Additional information

Qin Hu and Jianping Zhou contributed equally to this work.

The original online version of this article was revised: 1. Figure 2 was misplaced: The sagittal and horizontal views of figure 2a and figure 2b were not from the same rat. 2. Figure 3 was first published in Hu Qin, XU Xiao-lin, Zhou Jian-ping, Dai Hong-wei (2017) Effects of EMD on relapse and root repair after orthodontic tooth movement in rats. Shanghai J Stomatol,2017,26(2):156-161; doi: 10.19439/j.sjos.2017.02.006. The authors had the authorization of the Shanghai Journal of Stomatology to reuse the published materials, but neglected to quote this properly.

Caption Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Zhou, J., Xu, X. et al. Effect of EMD on the orthodontically induced root resorption repair process in rats. J Orofac Orthop 79, 83–95 (2018). https://doi.org/10.1007/s00056-017-0119-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-017-0119-8

Keywords

Schlüsselwörter

Navigation