Skip to main content
Log in

Mechanical properties of different esthetic and conventional orthodontic wires in bending tests

An in vitro study

Mechanische Eigenschaften verschiedener ästhetischer und konventioneller kieferorthopädischer Drähte in Biegeversuchen

Eine In-vitro-Untersuchung

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aims

The goal of this study was to determine the mechanical properties of different esthetic and conventional orthodontic wires in three-point and four-point bending tests, and in a biomechanical test employing three bracket systems.

Methods

The behavior of round wires with a diameter of 0.46 mm (0.018″) were investigated: uncoated nickel titanium (NiTi) wires, surface modified NiTi wires; FLI® Orthonol Wire® and glass fiber reinforced plastic wires. The biomechanical bending test was performed using the following bracket types: metal brackets (Discovery®, Dentaurum), ceramic brackets (Fascination®, Dentaurum), and plastic brackets (Elegance®, Dentaurum). All bending tests were performed in the orthodontic measurement and simulation system (OMSS) at a temperature of 37 °C. The classical three-point bending test was performed according to an ISO standard (DIN EN ISO 15841:2007) using the appropriate thrust die and supports with a predefined span of 10 mm. In the other tests the supports or interbracket distances were chosen such that the free wire length was also 10 mm (5 mm between adjacent brackets). All wires were loaded centrally to a maximum of 3.1 and 3.3 mm in the biomechanical test, respectively. The force was measured upon unloading with a loading velocity of 1 mm/min. Each specimen was loaded twice and a total of 10 specimens tested for each product. Weighted means and the error of the weighted mean were calculated for each product.

Results

Fiber reinforced wires displayed lowest forces in three-point bending with values of 0.4 N at a displacement of 1 mm and 0.7 N at a 2 mm displacement. In four-point bending the forces were 0.9 N and 1.4 N, respectively, at the same displacements. Almost all of the translucent wires showed fracture upon bending at displacements greater than 3 mm, independent of the bending test and bracket type. The different investigated NiTi wires, surface modified or conventional, only showed minor variation, e.g., 2.2 N for rematitan® Lite White and 2.0 N for rematitan®, 2.1 N for FLI® Coated Orthonol® and 1.7 N for Orthonol® in four-point bending. The rhodinized wire generated forces between these values (2.1 N).

Conclusion

The translucent wires had the lowest forces in all three bending tests; however, displacements above 3 mm resulted in increased risk of fracture. Forces of investigated NiTi wires were very high and in part above clinically recommended values.

Zusammenfassung

Ziele

Ziel der Studie war es, die mechanischen Eigenschaften verschiedener ästhetischer und konventioneller kieferorthopädischer Drähte in unterschiedlichen Biegeversuchen zu bestimmen: im klassischen Dreipunkt-Biegeversuch und im Vierpunkt-Biegeversuch, aber auch in einem biomechanischen Biegeversuch unter Einsatz von 3 Brackets.

Methoden

Die Eigenschaften folgender Runddrähte mit einem Durchmesser von 0,46 mm (0.018″) wurden untersucht: unbeschichtete Nickel-Titan(NiTi)-Drähte (rematitan® Lite, Dentaurum; Orthonol®, RMO), oberflächenmodifizierte NiTi-Drähte (rematitan® Lite White, Dentaurum; Plated Esthetik, rhodinized, Dentalline; FLI® Wire Orthonol®, RMO) und glasfaserverstärkte Kunststoffdrähte (transluzenter Bogen pearl, Dentaurum). Für den biomechanischen Biegeversuch wurden verwendet: Metall- (Discovery®, Dentaurum), Keramik- (Fascination®, Dentaurum) und Kunststoffbrackets (Elegance®, Dentaurum). Alle Biegeversuche wurden im orthodontischen Mess- und Simulationssystem (OMSS) bei einer Temperatur von 37 °C durchgeführt. Der klassische Dreipunkt-Biegeversuch erfolgte nach der ISO-Norm (DIN EN ISO 15841:2007) unter Einsatz eines vorgeschriebenen Druckstempels und einem Abstand der Stützpunkte von 10 mm. In den anderen Versuchen wurden die Stützpunkte bzw. die Interbracketabstände so gewählt, dass sich ebenfalls eine freie Drahtlänge von 10 mm ergab (5 mm Abstand zwischen den benachbarten Brackets). Alle Drahtproben wurden zentral bis zu einer maximalen Auslenkung von 3,1 bzw. 3,3 mm für den biomechanischen Test belastet. Die Kraft wurde auf dem anschließenden Entlastungsweg bei einer Geschwindigkeit von 1 mm/min gemessen. Jede Probe wurde 2-mal belastet und es wurden von jedem Produkt 10 Proben gemessen, berechnet wurden gewichtete Mittelwerte und der Fehler des gewichteten Mittels.

Ergebnisse

Glasfaserverstärkte Kunststoffbögen erzeugten im Dreipunkt-Biegeversuch mit 0,4 N bei einer Auslenkung von 1 mm und 0,7 N bei 2 mm die niedrigsten Kräfte. Im Vierpunkt-Biegeversuch lagen die Kräfte bei 0,9 und 1.4 N bei den entsprechenden Auslenkungen. Nahezu alle transluzenten Bögen zeigten Brüche bei der Biegeprüfung für Auslenkungen über 3 mm, unabhängig von der Art des Biegeversuchs und des verwendeten Brackettyps. Die unterschiedlichen untersuchten NiTi-Drähte zeigten, unabhängig von der Art der Oberflächenmodifikation bzw. davon ob beschichtet oder nicht, nur geringfügige Unterschiede in ihrem Kraftniveau. So erzeugten z. B. der rematitan Lite White 2,2 N und der rematitan 2,0 N, der FLI® Coated Orthonol® 2,1 N und der Orthonol® 1,7 N im Vierpunkt-Biegeversuch. Der rhodinierte Draht erzeugt vergleichbare Kräfte (2,1 N).

Schlussfolgerungen

Der transluzente Bogen hatte die geringsten Kräfte in allen 3 Biegeversuchen, jedoch zeigte er bei Auslenkungen über 3 mm eine verstärkte Bruchneigung. Die Kräfte der untersuchten NiTi-Drähte waren sehr hoch und teils oberhalb der klinisch empfohlenen Werte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ADA (1977) American Dental Association Specification No. 32 for orthodontic wires not containing precious metals. J Am Dent Assoc 95:1169–1171

  2. Alavi S, Hosseini N (2012) Load-deflection and surface properties of coated and conventional superelastic orthodontic archwires in conventional and metal-insert ceramic brackets. Dent Res J (Isfahan) 9:133–138

    Article  Google Scholar 

  3. ANSI/ADA (2002) Specification No. 32 for orthodontic wires. In: Dental products: standards, technical specifications and technical reports. Council on Dental Materials

  4. Bourauel C, Drescher D, Thier M (1992) An experimental apparatus for the simulation of three-dimensional movements in orthodontics. J Biomed Eng 14:371–378

    Article  PubMed  Google Scholar 

  5. Bourauel C, Drescher D, Nolte LP (1993) The computer-aided development of orthodontic treatment elements made from NiTi memory alloys exemplified by a pseudoelastic retraction spring. Fortschr Kieferorthop 54:45–56

    Article  PubMed  Google Scholar 

  6. Bradley TG (2013) Changes in orthodontic treatment modalities in the past 20 years: exploring the link between technology and scientific evidence. J Ir Dent Assoc 59:91–94

    PubMed  Google Scholar 

  7. Brantley WA (2001) Structures and properties of orthodontic materials. In: Brantley WA, Eliades T (eds) Orthodontic materials: scientific and clinical aspects. Thieme, Stuttgart, pp 1–26

  8. Brantley WA, Eliades T, Litsky AS (2001) Mechanics and mechanical testing of orthodontic materials. In: Brantley WA, Eliades T (eds) Orthodontic materials: scientific and clinical aspects. Thieme, Stuttgart, pp 27–48

  9. Cacciafesta V, Sfondrini MF, Lena A et al (2008) Force levels of fiber-reinforced composites and orthodontic stainless steel wires: a 3-point bending test. Am J Orthod Dentofac Orthop 133:410–413

    Article  Google Scholar 

  10. DIN EN ISO 15841. (2007) Zahnheilkunde—Drähte für die Kieferorthopädie (ISO 15841:2006) Beuth Verlag, Berlin

  11. Drescher D, Bourauel C, Thier M (1991) Orthodontic measuring and simulating systems (OMSS) for the static and dynamic analysis of tooth movement. Fortschr Kieferorthop 52:133–140

    Article  PubMed  Google Scholar 

  12. Elayyan F, Silikas N, Bearn D (2008) Ex vivo surface and mechanical proper-ties of coated orthodontic archwires. Eur J Orthod 30:661–667

    Article  PubMed  Google Scholar 

  13. Elayyan F, Silikas N, Bearn D (2010) Mechanical properties of coated superelastic archwires in conventional and self-ligating orthodontic brackets. Am J Orthod Dentofac Orthop 137:213–217

    Article  Google Scholar 

  14. Iijima M, Muguruma T, Brantley WA et al (2011) Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires. Am J Orthod Dentofac Orthop 140:65–71

    Article  Google Scholar 

  15. Juvvadi SR, Kailasam V, Padmanabhan S et al (2010) Physical, mechanical, and flexural properties of 3 orthodontic wires: an in vitro study. Am J Orthod Dentofac Orthop 138:623–630

    Article  Google Scholar 

  16. Kaphoor AA, Sundareswaran S (2012) Aesthetic nickel titanium wires—how much do they deliver? Eur J Orthod 34:603–609

    Article  PubMed  Google Scholar 

  17. Krishnan V, Kumar KJ (2004) Mechanical properties and surface characteristics of three archwire alloys. Angle Orthod 74:825–831

    PubMed  Google Scholar 

  18. Kusy RP, Mims L, Whitley JQ (2001) Mechanical characteristics of various tempers of as-received cobalt-chromium archwires. Am J Orthod Dentofac Orthop 119:274–291

    Article  Google Scholar 

  19. Miura F, Mogi M, Ohura Y et al (1986) The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics. Am J Orthod Dentofac Orthop 90:1–10

    Article  Google Scholar 

  20. Nucera R, Gatto E, Borsellino C et al (2014) Influence of bracket-slot design on the forces released by superelastic nickel-titanium alignment wires in different deflection configurations. Angle Orthod 84:541–547

    Article  PubMed  Google Scholar 

  21. Segner D, Ibe D (1995) Properties of superelastic wires and their relevance to orthodontic treatment. Eur J Orthod 17:395–402

    Article  PubMed  Google Scholar 

  22. Sernetz F (2005) Standardization of orthodontic products-does it make sense? J Orofac Orthop 66:307–318

    Article  PubMed  Google Scholar 

  23. Verstrynge A, van Humbeeck J, Willems G (2006) In-vitro evaluation of the material characteristics of stainless steel and beta-titanium orthodontic wires. Am J Orthod Dentofac Orthop 130:460–470

    Article  Google Scholar 

  24. Vijayalakshmi RD, Nagachandran KS, Kummi P et al (2009) A comparative evaluation of metallurgical properties of stainless steel and TMA archwires with timolium and titanium niobium archwires—an in vitro study. Ind J Dent Res 20:448–452

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the companies Dentaurum (Pforzheim, Germany), RMO (Denver, CO, USA), and Dentalline (Birkenfeld, Germany) for providing materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bourauel.

Ethics declarations

The accompanying manuscript does not include studies on humans or animals.

Conflict of interest

A. Alobeid, C. Dirk, S. Reimann, T. El-Bialy, A. Jäger, and C. Bourauel state that there are no competing interests.

Additional information

Prof. Dr. Christoph Bourauel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alobeid, A., Dirk, C., Reimann, S. et al. Mechanical properties of different esthetic and conventional orthodontic wires in bending tests. J Orofac Orthop 78, 241–252 (2017). https://doi.org/10.1007/s00056-016-0078-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-016-0078-5

Keywords

Schlüsselwörter

Navigation