Skip to main content
Log in

Integration of a maxillary model into facial surface stereophotogrammetry

Über die Integration des Kiefermodells in die Oberflächen-Stereofotogrammetrie des Gesichtes

  • Original article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Aims

Three-dimensional (3D) integration of a maxillary model into a facial model has only been possible by a complex procedure using face bow transfer after taking impressions of certain maxillary and facial parts. In this study, we aimed to develop a method for integrating a scanned maxillary model into a scan-realized facial model.

Material and methods

A total of 19 patients with the medical indication for cone-beam computed tomography (CBCT) and orthodontic treatment were included in this study. Facial and maxillary scans were also taken. The construction of the integrated surface model required 10 steps. This integration procedure was evaluated by taking ten 3D dentofacial linear segment measurements in the integrated scan and the CBCT. These results were analyzed using descriptive statistics.

Results

All measurements demonstrated good intra-individual reliability. We observed almost perfect congruence between integrated scan and CBCT in vertical distances, while the sagittal measurements revealed more, yet clinically acceptable, deviations possibly caused by different error sources in either of the two methods.

Conclusion

This new method is suitable for generating 3D integrated surface-scan models which can be used for growth and therapy control studies in orthodontics and other disciplines in the dentofacial fields. Since this method does not require ionizing radiation, it is highly recommendable as an application for children and adolescent patients.

Zusammenfassung

Ziele

Die dreidimensionale Integration eines Kiefermodells in ein Gesichtsmodell war bislang nur aufwendig durch Gesichtsbogenübertragung nach Abdrucknahme von Kiefer- und Gesichtsanteilen möglich. Aufgabe der vorliegenden Studie war, eine Methode zu entwickeln, welche die Übertragung der mit dem Scanner erfassten Kiefermodelle in das Scan-registrierte Gesichtsmodell ermöglicht.

Material und Methodik

Von 19 Patienten wurden aus medizinischer Indikation ein DVT, kieferorthopädische Anfangsunterlagen sowie Gesichts- und Kieferscans angefertigt. Die Erstellung des integrierten Oberflächenmodells erfolgte in zehn Teilschritten. Zur Evaluation der Integration wurden zehn dreidimensionale dentofaziale Messungen am integrierten Oberflächenmodell und am DVT durchgeführt und mittels deskriptiver Statistik miteinander verglichen.

Ergebnisse

Bei guter intraindividueller Reliabilität aller Messungen wiesen die vertikalen Distanzmessungen eine nahezu perfekte Übereinstimmung von integriertem Oberflächenmodell und DVT auf; die sagittalen Distanzmessungen zeigten mehr, jedoch klinisch akzeptable Abweichungen zwischen den beiden bildgebenden Verfahren, die allerdings von unterschiedlichen Fehlerquellen beider Methoden stammen können.

Schlussfolgerung

Die vorgestellte Methode ist geeignet, ein integriertes Oberflächenmodell herzustellen, das ohne ionisierende Strahlen für Wachstums- und Therapiestudien in der Zahn-, Mund- und Kieferheilkunde eingesetzt werden kann. Daher ist sie besonders für den Einsatz bei Kindern und jugendlichen Patienten geeignet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Bacher M, Pham T, Ehrenfeld M et al (1996) Three-dimensional registration and therapeutic management of maxillofacial anomalies in cleft palate patients. In: Davidovitch Z, Norton LA (eds) Biological mechanisms of tooth movement and craniofacial adaption. Harvard Society for Advancement of Orthodontics, Boston, MA, pp 567–575

  2. Baik HS, Kim SY (2010) Facial soft-tissue changes in skeletal Class III orthognathic surgery patients analyzed with 3-dimensional laser scanning. Am J Orthod Dentofacial Orthop 138:167–178

    Article  PubMed  Google Scholar 

  3. Baumgaertel S, Palomo JM, Palomo L, Hans MG (2009) Reliability and accuracy of cone beam computed tomography dental measurements. Am J Orthod Dentofacial Orthop 136:19–25

    Article  PubMed  Google Scholar 

  4. Berneburg M, Schubert C, Einem C von et al (2010) The reproducibility of landmarks on three-dimensional images of 4- to 6-year-old children. J Orofac Orthop 71:256–264

    Article  PubMed  Google Scholar 

  5. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    Article  PubMed  Google Scholar 

  6. Braumann B, Keilig L, Bourauel C, Jäger A (1999) 3D-Modellanalyse des Oberkiefers von Säuglingen mit LKG-Spalten. Biomed Tech 44:324–330

    Article  Google Scholar 

  7. Brown AA, Scarfe WC, Scheetz JP et al (2009) Linear accuracy of cone beam CT derived 3D images. Angle Orthod 79:150–157

    Article  PubMed  Google Scholar 

  8. Burke P, Beard L (1967) Stereophotogrammetry of the face: a preliminary investigation into the accuracy of a simplified system evolved for contour mapping by photography. Am J Orthod 53:769–782

    Article  PubMed  Google Scholar 

  9. Cha BK, Lee JY, Jost-Brinkmann PG, Yoshida N (2007) Analysis of tooth movement in extraction cases using three-dimensional reverse engineering technology. Eur J Orthod 29:325–331

    Article  PubMed  Google Scholar 

  10. Chaison JB, Chen CSK, Herring SW, Bollen AM (2010) Bone volume, tooth volume, and incisor relapse: a 3-dimensional analysis of orthodontic stability. Am J Orthod Dentofacial Orthop 138:778–786

    Article  PubMed  Google Scholar 

  11. Coombes AM, Moss JP, Linney AD et al (1991) A mathematical method for comparison of three-dimensional changes in facial surface. Eur J Orthod 13:95–110

    PubMed  Google Scholar 

  12. Cutting CB, McCarthy JG, Karron DB (1988) Three-dimensional input of body surface data using a laser light scanner. Ann Plast Surg 21:38–45

    Article  PubMed  Google Scholar 

  13. Damstra J, Fourie Z, Huddleston Slater JJR, Ren Y (2010) Accuracy of linear measurements from cone-beam computed tomography-derived surface models of different voxel sizes. Am J Orthod Dentofacial Orthop 137:16e1–16e6

    Google Scholar 

  14. D’Apuzzo N (2006) Overview of 3D surface digitization technologies in Europe. In: Corner BD, Li P, Tocheri M (eds) Three-dimensional image capture and applications VI. San Jose: Proceedings of the SPIE-IS&T Electronic Imaging 6056:42–54

  15. Duffy S, Noar JH, Evans RD, Sanders R. (2000) Three-dimensional analysis of the child cleft face. Cleft Palate Craniofac J 37:137–144

    Article  PubMed  Google Scholar 

  16. Edler R, Orth M, Rahim MA et al (2010) The use of facial anthropometrics in aesthetic assessment. Cleft Palate Craniofac J 47:48–57

    Article  PubMed  Google Scholar 

  17. Farkas LG (1994) Anthropometry of the head and face in medicine, 2 edn. Raven, New York

  18. Ferrario VF, Sforza C, Poggio CE, Serrao G (1996) Facial three-dimensional morphometry. Am J Orthod Dentofacial Orthop 109:86–93

    Article  PubMed  Google Scholar 

  19. Ferrario VF, Sforza C, Schmitz JH et al (1998) A three-dimensional computerized mesh diagram analysis and application in soft tissue facial morphometry. Am J Orthod Dentofacial Orthop 114:404–413

    Article  PubMed  Google Scholar 

  20. Ferrario VF, Sforza C, Dellavia C et al (2003) A quantitative three-dimensional assessment of soft tissue facial asymmetry of cleft lip and palate adult patients. J Craniofac Surg 14:739–746

    Article  PubMed  Google Scholar 

  21. Gwilliam JR, Cunningham SJ, Hutton T (2006) Reproducibility of soft tissue landmarks on three-dimensional facial scans. Eur J Orthod 28:408–415

    Article  PubMed  Google Scholar 

  22. Hajeer MY, Ayoub AF, Millet DT et al (2002) Three-dimensional imaging in orthognathic surgery: the clinical application of a new method. Int J Adult Orthod Orthognath Surg 17:318–330

    Google Scholar 

  23. Hajeer MY, Millet DT, Ayoub AF, Siebert JP (2004) Application of three-dimensional imaging in orthodontics: Part I. J Orthod 31:62–70

    Article  PubMed  Google Scholar 

  24. Hajeer MY, Mao Z, Millet DT et al (2005) A new three-dimensional method of assessing facial volumetric changes after orthognathic treatment. Cleft Palate Craniofac J 42:113–120

    Article  PubMed  Google Scholar 

  25. Halazonetis DJ (2001) Acquisition of three-dimensional shapes from images. Am J Orthod Dentofacial Orthop 119:556–560

    Article  PubMed  Google Scholar 

  26. Hassan B, Souza PC, Jacobs R et al (2010) Influence of scanning and reconstruction parameters on quality of three-dimensional surface models of the dental arches from cone-beam computed tomography. Clin Oral Invest 14: 303–310

    Article  Google Scholar 

  27. Hell B (1995) 3D sonography. Int J Oral Maxillofac Surg 24:84–89

    Article  PubMed  Google Scholar 

  28. Hilgers ML, Scarfe WC, Scheetz JP, Farman AG (2005) Accuracy of linear temporomandibular joint measurements with cone beam computed tomography and digital cephalometric radiography. Am J Orthod Dentofacial Orthop 128:803–811

    Article  PubMed  Google Scholar 

  29. Hoefert CS, Bacher M, Herberts T et al (2010) Implementing a superimposition and measurement model for 3D sagittal analysis of therapy-induced changes in facial soft tissue: a pilot study. J Orofac Orthop 71:221–234

    Article  PubMed  Google Scholar 

  30. Holberg C, Steinhäuser S, Geis P, Rudzki-Janson I (2005) Cone-beam computed tomography in orthodontics: benefits and limitations. J Orofac Orthop 66:434–444

    Article  PubMed  Google Scholar 

  31. Karbacher S (1997) Rekonstruktion und Modellierung von Flächen aus Tiefenbildern. Inauguraldissertation, Universität Erlangen

  32. Kawai T, Natsume N, Shibata H, Yamamoto T (1990) Three-dimensional analysis of facial morphology using moiré stripes. Part I: Method. Int J Oral Maxillofac Surg 19:356–358

    Article  PubMed  Google Scholar 

  33. Kochel J, Meyer-Marcotty P, Strnad F et al (2010) 3D Soft tissue analysis – Part 1: Sagittal parameters. J Orofac Orthop 71:40–52

    Article  PubMed  Google Scholar 

  34. Krimmel M, Bacher M, Cornelius CP et al (2002) 3-dimensional image acquisition for analysis of primary cleft-induced facial deformity with an optoelectronic surface scanner. Mund Kiefer Gesichtschir 6:158–161

    Article  PubMed  Google Scholar 

  35. Krimmel M, Schuck N, Bacher M, Reinert S (2011) Facial surface changes after cleft alveolar bone grafting. J Oral Maxillofac Surg 69:80–83

    Article  PubMed  Google Scholar 

  36. Krimmel M, Kluba S, Bacher M et al (2006) Digital surface photogrammetry for anthropometric analysis oft he cleft infant face. Cleft Palate Craniofac J 43:350–355

    PubMed  Google Scholar 

  37. Kumar V, Ludlow J, Cevidanes LHS, Mol A (2008) In vivo comparison of conventional and cone beam CT synthesized cephalograms. Angle Orthod 78:873–879

    Article  PubMed  Google Scholar 

  38. Laboureux X, Häusler G (2001) Localization and registration of three-dimensional objects in space – where are the limits? Appl Opt 40:5206–5216

    Article  PubMed  Google Scholar 

  39. Lamichane M, Anderson NK, Rigali PH et al (2009) Accuracy of reconstructed images from cone beam computed tomography scans. Am J Orthod Dentofacial Orthop 136:156e1–156e6

    Google Scholar 

  40. Maal TJJ, Plooij JM, Rangel FA et al (2008) The accuracy of matching three-dimensional photographs with skin surfaces derived from cone-beam computed tomography. Int J Oral Maxillofac Surg 37:641–646

    Article  PubMed  Google Scholar 

  41. Maki K, Inou N, Takanashi A, Miller AJ (2003) Computer-assisted simulations in orthodontic diagnosis and the application of a new cone beam X-ray computed tomography. Orthod Craniofac Res 6 (Suppl 1):95–101, discussion: 179–182

  42. Moerenhout AMML, Gelaude F, Swennen GRJ et al (2009) Accuracy and repeatability of cone beam computed tomography (CBCT) measurements used in the determination of facial indices in the laboratory setup. J Craniomaxillofac Surg 37:18–23

    Article  PubMed  Google Scholar 

  43. Moreira CR, Sales MAO, Lopez PML, Cavalcanti MGP (2009) Assessment of linear and angular measurements on threedimensional cone beam computed tomographic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:430–436

    Article  PubMed  Google Scholar 

  44. Nanda RS, Gosh J, Bazakidou E (1996) Three-dimensional facial analysis using a video imaging system. Angle Orthod 66:181–188

    PubMed  Google Scholar 

  45. Nie Q, Lin J (2006) A comparison of dental arch forms between Class II Division 1 and normal occlusion assessed by Euclidean distance matrix analysis. Am J Orthod Dentofacial Orthop 129:528–535

    Article  PubMed  Google Scholar 

  46. Rangel FA, Maal TJJ, Bergé SJ et al (2008) Integration of digital dental casts in 3-dimensional facial photographs. Am J Orthod Dentofacial Orthop 134:820–826

    Article  PubMed  Google Scholar 

  47. Rosati R, De Menezes M, Rosetti A et al (2010) Digital dental cast placement in 3-dimensional full-face reconstruction: a technical evaluation. Am J Orthod Dentofacial Orthop 138:84–88

    Article  PubMed  Google Scholar 

  48. Sade Hoefert C, Bacher M, Herberts T et al (2010) 3D soft tissue changes in facial morphology in patients with cleft lip and palate and class III malocclusion under therapy with rapid maxillary expansion and delaire facemask. J Orofac Orthop 71:136–151

    Article  Google Scholar 

  49. Schwenzer-Zimmerer K, Chaitidis D, Boerner I et al (2008) Systematic contact-free 3D topometry of the soft tissue profile in cleft lips. Cleft Palate Craniofac J 45:607–613

    Article  PubMed  Google Scholar 

  50. Surwald C, Ward-Booth P (2000) Initial experiences with digital 3-dimensional stereophotogrammetry imaging. Mund Kiefer Gesichtschir 4:183–186

    Article  PubMed  Google Scholar 

  51. Talman Degen P (1957) Die Stereogrammetrie – ein diagnostisches Hilfsmittel in der Kieferorthopädie. Inauguraldissertation, Universität Zürich

  52. Yamada T, Sugahara T, Mori Y, Sakuda M (1998) Rapid 3D measurement system for facial surface structure. Plast Reconstr Surg 102:2108–2113

    Article  PubMed  Google Scholar 

  53. Yamada T, Mori Y, Minami K, Tsukamoto Y (2002) Three-dimensional analysis of facial morphology in normal Japanese children as control data for cleft surgery. Cleft Palate Craniofac J 39:517–526

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.E. Bechtold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtold, T., Göz, T., Schaupp, E. et al. Integration of a maxillary model into facial surface stereophotogrammetry. J Orofac Orthop 73, 126–137 (2012). https://doi.org/10.1007/s00056-011-0060-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-011-0060-1

Keywords

Schlüsselwörter

Navigation