Skip to main content
Log in

Numerical Analyses of Biomechanical Behavior of Various Orthodontic Anchorage Implants

Numerische Untersuchungen zum biomechanischen Verhalten verschiedener orthodontischer Ankerimplantate

  • Original Article
  • Published:
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie Aims and scope Submit manuscript

Abstract

Objective:

The quality and quantity of the alveolar process are considered important influential factors affecting the anchorage effectiveness of orthodontic mini-implants. The objective of this study was to establish the effect of various material parameters in regard to various implant types, sizes, and load directions using the finite element method (FEM).

Materials and Methods:

FE models of the following 16 implants by six different manufacturers were made in idealized jaw bone segments with the program system MSC.Marc/Mentat: Åarhus Mini-Implant (American Orthodontics), AbsoAnchor® (Dentos), Dual-Top™ (Jeil Medical), LOMAS (Mondeal), OrthoImplant (IMTEC), tomas ® (Dentaurum). The intra-osseous parts of the mini-implants had lengths ranging between 6.7 mm and 10.0 mm, and diameters between 1.2 mm and 2.0 mm. Cortical thicknesses of 1 mm and 2 mm were simulated. The Young’s modulus of cancellous bone was varied between 100 MPa and 1 GPa, the load direction of 0° to 45° in a buccal direction for a load of 5 N. In each case we determined the deflection of the implant head as well as the distribution of stresses and strain in the cortical and cancellous bone.

Results:

Deflections of the implants varied between 2 μm (Åarhus Mini-Implant 11.6 mm × 2.0 mm, 2 mm cortex) and 20 μm (AbsoAnchor® 12.5 mm × 1.2 mm, 1 mm cortex), the deflection was between 4 μm and 10 μm for most of the implants. The deflections of the implant increased as Young’s modulus of the cancellous bone dropped with a cortical thickness of 1 mm. We did not observe such a correlation with a cortical thickness of 2 mm. We measured the highest loads in the bone in all models when the cortical thickness measured 1 mm and with a Young’s modulus of cancellous bone of 100 MPa. When the load direction was tilted in a buccal direction, the stresses and amount of strain were reduced by as much as 35%.

Conclusion:

We have demonstrated that the cortical thickness is a decisive parameter for the stability of these mini-implants. When the cortical bone is thinner, the mobility becomes increasingly dependent on the Young’s modulus of the cancellous bone. Moreover, the greatest stress and amount of strain occur in the bone when the cortical bone is less thick and Young’s modulus of cancellous bone lower.

Zusammenfassung

Ziel:

Qualität und Quantität des Alveolarknochens gelten als bedeutende Einflussfaktoren auf die Verankerungseffizienz orthodontischer Mini-Implantate. Ziel dieser Untersuchung war es, die Auswirkung unterschiedlicher Materialparameter im Hinblick auf verschiedene Implantattypen und -größen sowie Belastungsrichtungen mit Hilfe der Finite-Elemente-Methode (FEM) zu ermitteln.

Material und Methodik:

FE-Modelle der folgenden 16 Implantate sechs unterschiedlicher Hersteller wurden in idealisierten Kieferknochensegmenten mit dem Programmsystem MSC.Marc/Mentat erstellt: Åarhus Mini-Implant (American Orthodontics), AbsoAnchor® (Dentos), DualTop™ (Jeil Medical), LOMAS (Mondeal), OrthoImplant (IMTEC) und tomas ® (Dentaurum). Der intraossäre Anteil der Mini-Implantate variierte zwischen Längen von 6,7 mm und 10,0 mm, der Durchmesser zwischen 1,2 und 2,0 mm. Es wurden Kortikalisdicken von 1 mm und 2 mm simuliert. Der Spongiosa-Elastizitätsmodul(-E-Modul) wurde zwischen 100 MPa und 1 GPa, die Belastungsrichtung von 0° bis 45° nach bukkal bei einer Last von 5 N variiert. Es wurden jeweils die Auslenkung des Implantatkopfes sowie die Verteilung von Spannungen und Verzerrungen in der Kortikalis und der Spongiosa ermittelt.

Ergebnisse:

Auslenkungen der Implantate variierten zwischen 2 μm (Åarhus Mini-Implant 11,6 mm × 2,0 mm, 2 mm Kortikalis) und 20 μm (AbsoAnchor® 12,5 mm × 1,2 mm, 1 mm Kortikalis), bei einem Großteil der Implantate lag die Auslenkung zwischen 4 μm und 10 μm. Bei einer Kortikalisdicke von 1 mm stiegen die ermittelten Auslenkungen des Implantates mit sinkendem E-Modul der Spongiosa an. Bei einer Kortikalisdicke von 2 mm konnte dieser Zusammenhang nicht beobachtet werden. Bei allen Modellen konnten für eine Kortikalisdicke von 1 mm und einem Spongiosa-E-Modul von 100 MPa die höchsten Belastungen im Knochen ermittelt werden. Durch das Kippen der Lastrichtung nach bukkal reduzierten sich die Spannungen und Verzerrungen um bis zu 35%.

Schlussfolgerung:

Insgesamt zeigte sich, dass die Kortikalisdicke ein entscheidender Parameter für die Stabilität der untersuchten Mini-Implantate ist. Bei geringer Dicke nimmt die Beweglichkeit in Abhängigkeit vom E-Modul der Spongiosa deutlich zu. Bei geringer Kortikalisdicke und niedrigem Spongiosa-E-Modul werden dabei die höchsten Spannungen und Verzerrungen im Knochen erreicht.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arte S. Phenotypic and genotypic features of familial hypodontia, Academic Dissertation. Institute of Dentistry Department of Pedodontics and Orthodontics, University of Helsinki, Finland. 2001.

    Google Scholar 

  2. Ben-Bassat Y, Brin I. Skeletodental patterns in patients with multiple congenitally missing teeth. Am J Orthod Dentofacial Orthop 2003;124:521–525.

    Article  PubMed  Google Scholar 

  3. Bondarets N, McDonald F. Analysis of vertical facial form in patients with severe hypodontia. Am J Phys Antropol 2000;111:177–184.

    Article  Google Scholar 

  4. Chung LK, Hobson RS, Nunn JH, et al. An analysis of the skeletal relationships in a group of young people with hypodontia. J Orthod 2000;27:315–318.

    Article  PubMed  Google Scholar 

  5. Dahlberg G. Statistical methods for medical and biological students. New York: Interscience Publications 1940.

    Google Scholar 

  6. Dermaut LR, Goeffers KR, De Smith AA. Prevalence of tooth agenesis correlated with jaw relationship and dental crowding. Am J Orthod Dentofacial Orthop 1986;90:204–210.

    Article  PubMed  Google Scholar 

  7. Drescher D. Kephalometrie. In: Schmuth GPF, Vardimon AD, Hrsg. Kieferorthopädie. 3. Aufl. Stuttgart — New York: Thieme 1994;86–93.

    Google Scholar 

  8. Endo T, Yoshino S, Ozoe R, et al. Association of advanced hypodontia and craniofacial morphology in Japanese orthodontic patients. Odontology 2004; 92:48–53.

    Article  PubMed  Google Scholar 

  9. Endo T, Ozoe R, Yoshino S, et al. Hypodontia patterns and variations in craniofacial morphology in Japanese orthodontic patients. Angle Orthod 2006;76:996–1003.

    Article  PubMed  Google Scholar 

  10. Gabris K, Tarjan I, Csiki P, et al. Prevalence of congenital hypodontia in the permanent dentition and its treatment. Dent Update 1999;26:298–302.

    Google Scholar 

  11. Hasund A. Klinische Kephalometrie für die Bergen-Technik. Bergen, Norwegen: 1976.

  12. Johnson EL, Roberts MW, Guckes AD, et al. Analysis of craniofacial development in children with hypohidrotic ectodermal dysplasia. Am J Med Genet 2002;112:327–334.

    Article  PubMed  Google Scholar 

  13. Kirzioglu Z, Köseler Sentut T, Özay Ertürk MS, et al. Clinical features of hypodontia and associated dental anomalies: a retrospective study. Oral Disease 2005;11:399–404.

    Article  Google Scholar 

  14. Lisson JA, Scholtes S. Investigation of craniofacial morphology in patients with hypo- and oligodontia. J Orofac Orthop 2005;66:197–207.

    Article  PubMed  Google Scholar 

  15. Mattheeuws N, Dermaut L, Martens G. Has hypodontia increased in Caucasians during the 20th century? A meta-analysis. Eur J Orthod 2004;26:99–103.

    Article  PubMed  Google Scholar 

  16. Muller TP, Hill IN, Petresen AC, et al. A survey of congenitally missing teeth. J Am Dent Assoc 1970;81:101–107.

    PubMed  Google Scholar 

  17. Nodal M, Kjaer I, Solow B. Craniofacial morphology in patients with multiple congenitally missing permanent teeth. Eur J Orthod 1994;16:104–109.

    PubMed  Google Scholar 

  18. Nunn JH, Carter NE, Gillgrass TJ et al. The interdisciplinary management of hypodontia: background and role of paediatric dentistry. Br Dent J 2003;194:245–251.

    Article  PubMed  Google Scholar 

  19. Øgaard B, Krogstad O. Craniolfacial structure and soft tissue profile in patients with severe hypodontia. Am J Orthod Dentofacial Orthop 1995;108:472–477.

    Article  PubMed  Google Scholar 

  20. Rakosi T. Atlas und Anleitung zur praktischen Fernröntgenanalyse. 2. Aufl. München-Wien: Carl Hanser Verlag, 1988;1:59–76.

    Google Scholar 

  21. Ricketts RM. Bioprogressive Therapie. Heidelberg: Dr. Alfred Hüthig Verlag GmbH, 1988.

    Google Scholar 

  22. Riolo ML, Moyers RE, McNamara JA. An Atlas of craniofacial growth: cephalometric standards from the university school growth study. Center for Human Growth and Development. Ann Arbor MI: The University of Michigan 1974;6:23–99;7:101–216.

    Google Scholar 

  23. Roald KL, Wisth PJ, Thunold K, et al. Changes in cranio-facial morphology of individuals with hypodontia between the ages of 9 and 16. Acta Odontol Scand 1982;40:65–74.

    Article  PubMed  Google Scholar 

  24. Sarnäs KV, Rune B. The facial profile in advanced hypodontia: a mixed longitudinal study of 141 children. Eur J Orthod 1983;5:133–143.

    PubMed  Google Scholar 

  25. Stephen A, Cengiz SB. The use of overdentures in the management of severe hypodontia associated with microdontia: a case report. J Clin Pediar Dent 2003;27:219–222.

    Google Scholar 

  26. Strizel F, Symons AL, Gage JP. Agenesis of the second premolar in males and females: distribution, number and sites affected. Community Dent Oral Epidemiol 1989;17:123–126.

    Article  Google Scholar 

  27. Wisth PJ, Thunold K, Böe OE. The craniofacial morphology of individuals with hypodontia. Acta Odontol Scand 1974;32:282–290.

    Google Scholar 

  28. Woodworth DA, Sinclair PM, Alexander RG. Bilateral congenital absence of maxillary lateral incisors: a craniofacial and dental cast analysis. Am J Orthod 1985;87:280–293.

    Article  PubMed  Google Scholar 

  29. Yuksel S, Ucem T. The effect of tooth agenesis on dentofacial structures. Eur J Orthod 1997;19:71–78.

    Article  PubMed  Google Scholar 

  30. Zhu JF, Marcushamer M, King DL, et al. Supernumerary and congenitally missing teeth: a literature review. J Clin Pediar Dent 1996;20:87–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Bourauel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stahl, E., Keilig, L., Abdelgader, I. et al. Numerical Analyses of Biomechanical Behavior of Various Orthodontic Anchorage Implants. J Orofac Orthop 70, 115–127 (2009). https://doi.org/10.1007/s00056-009-0817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00056-009-0817-y

Key Words:

Schlüsselwörter:

Navigation