Skip to main content
Log in

Structure activity relationship (SAR) driven design and discovery of WCK 5107 (Zidebactam): novel β-lactam enhancer, potent against multidrug-resistant gram-negative pathogens

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Extended-spectrum beta-lactamases (ESBL) are the enzymes responsible for producing multidrug-resistant (MDR) bacterial strains, making currently available β-lactam drugs ineffective against such bacterial infections. Avibactam and relebactam are the two non-β-lactam inhibitors approved in combination with other antibiotics for clinical use and originated from the diazabicyclooctane (DBO) series. However with time, ESBL strains produce a high degree of resistance, causing such drug combinations to be ineffectual. Under our program to explore an advanced candidate effective against ESBL-producing pathogens, we have successfully developed a novel series of compounds bearing hydrazide function with a dual mode of action involving enzyme inhibition and better penicillin-binding protein (PBP) affinity. The selectivity of these molecules to bind with PBP2 provided an opportunity to combine it with β-lactam drugs having another PBP affinity and binding properties. Synergistic PBP binding effect favored positively for the development of the combination product with various β-lactam drugs. This new generation DBO analogs are termed as enhancers because it enhances the potency of partner drugs rather than restoring initial activity. Most of the compounds from novel hydrazide series are self-active, having reasonable minimum inhibitory concentration (MIC) values against Escherichia Coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii. In preclinical and clinical studies, these new chemical entities (NCEs) in combination with the β-lactam drug exhibited potency against a panel of gram-negative pathogens. WCK 5107 (Zidebactam) and WCK 5153 are the two potent β-lactam enhancers that emerged through this development. Notably, the cefepime combination of zidebactam (WCK 5222) received qualified infectious disease product (QIDP) status, completed global phase I clinical trial, and is currently in the global phase III stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-Lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem. 2020;208:112829. https://doi.org/10.1016/j.ejmech.2020.112829

    Article  CAS  PubMed  Google Scholar 

  2. Qin W, Panunzio M, Biondi S. β-Lactam antibiotics renaissance. Antibiotics. 2014;3:193–215. https://doi.org/10.3390/antibiotics3020193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bush K, Bradford PA. β-Lactams and β-lactamase inhibitors: an overview. Cold Spring Harb Perspect Med. 2016;6:a025247. https://doi.org/10.1101/cshperspect.a025247

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saudagar PS, Survase SA, Singhal RS. Clavulanic acid: a review. Biotechnol Adv. 2008;26:335–51. https://doi.org/10.1016/j.biotechadv.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Noguchi JK, Gill MA. Sulbactam: a beta-lactamase inhibitor. Clin Pharm. 1988;7:37–51.

    CAS  PubMed  Google Scholar 

  6. Williams JD. beta-Lactamase inhibition and in vitro activity of sulbactam and sulbactam/cefoperazone. Clin Infect Dis. 1997;24:494–7. https://doi.org/10.1093/clinids/24.3.494

    Article  CAS  PubMed  Google Scholar 

  7. Sucher AJ, Chahine EB, Cogan P, Fete M. Ceftolozane/tazobactam: a new cephalosporin and β-lactamase inhibitor combination. Ann Pharmacother. 2015;49:1046–56. https://doi.org/10.1177/1060028015593293

    Article  CAS  PubMed  Google Scholar 

  8. Gin A, Dilay L, Karlowsky JA, Walkty A, Rubinstein E, Zhanel GG. Piperacillin-tazobactam: a beta-lactam/beta-lactamase inhibitor combination. Expert Rev Anti Infect Ther. 2007;5:365–83. https://doi.org/10.1586/14787210.5.3.365

    Article  CAS  PubMed  Google Scholar 

  9. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y. β-Lactamases and β-lactamase inhibitors in the 21st century. J Mol Biol. 2019;431:3472–500. https://doi.org/10.1016/j.jmb.2019.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luci G, Mattioli F, Falcone M, Di Paolo A. Pharmacokinetics of non-β-lactam β-lactamase inhibitors. Antibiotics. 2021;10:769. https://doi.org/10.3390/antibiotics10070769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S, Zhanel M. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs. 2018;78:65–98. https://doi.org/10.1007/s40265-017-0851-9

    Article  CAS  PubMed  Google Scholar 

  12. Papp-Wallace KM, Bonomo RA. New β-lactamase inhibitors in the clinic. Infect Dis Clin North Am. 2016;30:441–64. https://doi.org/10.1016/j.idc.2016.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  13. Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol. 2011;14:550–5. https://doi.org/10.1016/j.mib.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  14. Bhattacharya S, Bonnet A, Dedhiya M. Inventors; Novexel SA and Forest laboratories holdings, assignees. Polymorphic and pseudopolymorphic forms of a pharmaceutical compound. WO 042560 A2. 2011

  15. Lapuebla A, Abdallah M, Olafisoye O, Cortes C, Urban C, Landman D. Activity of imipenem with relebactam against gram-negative pathogens from New York City. Antimicrob Agents Chemother. 2015;59:5029–31. https://doi.org/10.1128/AAC.00830-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stachyra T, Péchereau MC, Bruneau JM, Claudon M, Frère JM, Miossec C. Mechanistic studies of the inactivation of TEM-1 and P99 by NXL104, a novel non-beta-lactam beta-lactamase inhibitor. Antimicrob Agents Chemother. 2010;54:5132–8. https://doi.org/10.1128/AAC.00568-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mushtaq S, Warner M, Livermore DM. In vitro activity of ceftazidime+NXL104 against Pseudomonas aeruginosa and other non-fermenters. J Antimicrob Chemother. 2010;65:2376–81. https://doi.org/10.1093/jac/dkq306

    Article  CAS  PubMed  Google Scholar 

  18. Lampilas M, Aszodi J, Rowlands DA, Fromentin C. Inventors; Azatricyclic compounds preparation thereof and use as medicine, in particular as antibacterial agents US 7112592 B2. 2006

  19. Blizzard TA, Chen H, Gude C, Hermes JD, Imbriglio JE, Kim S. Inventors; Beta-lactamase inhibitors, WO 2009/091856 A2. 2009

  20. Ronsheim MS, Racha S, Lawton GR, Zhou SH, Kalyan YB, Golden M. Inventors; Processes for preparing Heterocyclic compounds including Trans-7-oxo-6(sulphooxy)-1,6-diazabicyclo[3,2,1] octane-2-carboxamide and salts thereof. US 8829191 B2. 2014

  21. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:657–86. https://doi.org/10.1128/CMR.18.4.657-686.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. Clin Microbiol Rev. 2010;23:160–201. https://doi.org/10.1128/CMR.00037-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Asli A, Brouillette E, Krause KM, Nichols WW, Malouin F. Distinctive binding of avibactam to penicillin-binding proteins of gram-negative and gram-positive bacteria. Antimicrob Agents Chemother. 2015;60:752–6. https://doi.org/10.1128/AAC.02102-15

    Article  CAS  PubMed  Google Scholar 

  24. King AM, King DT, French S, Brouillette E, Asli A, Alexander JA. Structural and kinetic characterization of diazabicyclooctanes as dual inhibitors of both serine-β-lactamases and penicillin-binding proteins. ACS Chem Biol. 2016;11:864–8. https://doi.org/10.1021/acschembio.5b00944

    Article  CAS  PubMed  Google Scholar 

  25. Shaikh S, Fatima J, Shakil S, Rizvi SM, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: types, epidemiology and treatment. Saudi J Biol Sci. 2015;22:90–101. https://doi.org/10.1016/j.sjbs.2014.08.002

    Article  CAS  PubMed  Google Scholar 

  26. Patel MV, Deshpande PK, Bhawsar S, Bhagwat S, Jafri MA, Mishra A. Inventors; 1, 6-Diazabicyclo [3,2,1] octan-7-one derivatives and their use in the treatment of bacterial infections. WO 2013/030733A1. 2013

  27. Papp-Wallace KM, Nguyen NQ, Jacobs MR, Bethel CR, Barnes MD, Kumar V. Strategic approaches to overcome resistance against gram-negative pathogens using β-lactamase inhibitors and β-lactam enhancers: activity of three novel diazabicyclooctanes WCK 5153, zidebactam (WCK 5107), and WCK 4234. J Med Chem. 2018;61:4067–86. https://doi.org/10.1021/acs.jmedchem.8b00091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moya B, Barcelo IM, Bhagwat S, Patel M, Bou G, Papp-Wallace KM. WCK 5107 (Zidebactam) and WCK 5153 are novel inhibitors of PBP2 showing potent “β-Lactam Enhancer” activity against Pseudomonas aeruginosa, including multidrug-resistant metallo-β-lactamase-producing high-risk clones. Antimicrob Agents Chemother. 2017;61:e02529–16. https://doi.org/10.1128/AAC.02529-16

    Article  PubMed  PubMed Central  Google Scholar 

  29. Morinaka A, Tsutsumi Y, Yamada M, Suzuki K, Watanabe T, Abe T. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam ‘enhancer’. J Antimicrob Chemother. 2015;70:2779–86. https://doi.org/10.1093/jac/dkv166

    Article  CAS  PubMed  Google Scholar 

  30. Rajavel M, Kumar V, Nguyen H, Wyatt J, Marshall SH, Papp-Wallace KM. Structural characterization of diazabicyclooctane β-lactam “Enhancers” in complex with penicillin-binding proteins PBP2 and PBP3 of Pseudomonas aeruginosa. mBio. 2021;12:e03058–20. https://doi.org/10.1128/mBio.03058-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sader HS, Mendes RE, Duncan LR, Carvalhaes CG, Castanheria M. Antimicrobial activity of cefepime/zidebactam (WCK 5222), a β-lactam/β-lactam enhancer combination, against clinical isolates of Gram-negative bacteria collected worldwide (2018-19). J Antimicrob Chemother. 2022;77:2642–9. https://doi.org/10.1093/jac/dkac233

    Article  CAS  PubMed  Google Scholar 

  32. Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of cefepime/zidebactam (WCK 5222) against ‘problem’ antibiotic-resistant gram-negative bacteria sent to a national reference laboratory. J Antimicrob Chemother. 2021;76:1511–22. https://doi.org/10.1093/jac/dkab067

    Article  CAS  PubMed  Google Scholar 

  33. Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of cefepime/zidebactam (WCK 5222) against gram-negative bacteria. J Antimicrob Chemother. 2017;72:1373–85. https://doi.org/10.1093/jac/dkw593

    Article  CAS  PubMed  Google Scholar 

  34. Mushtaq S, Garello P, Vickers A, Woodford N, Livermore DM. Activity of ertapenem/zidebactam (WCK 6777) against problem Enterobacterales. J Antimicrob Chemother. 2022;77:2772–8. https://doi.org/10.1093/jac/dkac280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Prashant Joshi, Dr. Vipul Rane and Mr. Badrinarayan Chandak for providing microbiological and analytical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Bhavsar.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhavsar, S., Joshi, S., Pawar, S. et al. Structure activity relationship (SAR) driven design and discovery of WCK 5107 (Zidebactam): novel β-lactam enhancer, potent against multidrug-resistant gram-negative pathogens. Med Chem Res 32, 2245–2255 (2023). https://doi.org/10.1007/s00044-023-03135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03135-6

Keywords

Navigation