Skip to main content
Log in

Diazabenzo[a]phenoxazone sulphonamides: synthesis, in-silico and in-vitro antimicrobial studies

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The syntheses of new sulphonamide derivatives of 8,10-diazabenzo[a]phenoxazones are reported. The condensation of 4,5-diamino-6-hydroxy-2-mercaptopyrimidine and 2,3-dichloro-1,4-naphthoquinone in a basic medium gave the key functional intermediate, 11-amino-6-chloro-9-mercapto-8,10-diazabenzo[a]phenoxazin-5-one. The conversion of the later compound to its sulphonamide derivatives was achieved via nickel catalyzed cross-coupling Buchwald-Hartwig protocol. Reaction between 11-amino-6-chloro-9-mercapto-8,10-diazabenzo[a]phenoxazin-5-one and various aryl sulphonamides and sulphonyl chlorides furnished eight new mono sulphonamide substituted diazaphenoxazone compounds. Subsequent coupling of mono sulphonamide substituted diazaphenoxazone compounds 5a-d with four different arylsulphonyl chlorides under similar reaction conditions gave the disubstituted derivatives 8a-d. The products were isolated in 74 – 88% yields and characterized by means of Uv-visible, FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy. The synthesized compounds were screened for antimicrobial activity against bacterial strains: Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Salmonella typhi and Klebsiella pneumonia, and fungal strains, Aspergillus niger, and Candida albican, using agar-well diffusion method. The activities of the compounds were compared with that of colymycin, which is a strong antibacterial, and antifungal drug, Most of the compounds showed appreciable antimicrobial activities comparable with the activity of colymycin. The in silico study revealed that all the synthesized compounds showed significant binding affinity for both intact and mutated DNA gyrase. Compounds 8a and 5b showed the highest binding affinities of -12.31 and -13.30 kcal/mol for intact and mutated DNA gyrase respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aarestrup FM (2009) Occurrence of glycopeptides resistance among enterococcus faecium isolates from conventional and ecological poultry farms. Micro Drug Resist 1(3):255. https://doi.org/10.1089/mdr.1995.1.255

    Article  Google Scholar 

  • Adeniyi BA, Odelola HA (1996) Antimicrobial potentials of diospyros mespiliforrmis (Ebenaceae). Afr J Med Sci 255:211–224

    Google Scholar 

  • Alovero F, Nieto M, Mazzieri MR, Then R, Manzo RH (1998) Mode of Action of Sulfanilyl Fluoroquinolones. Antimicrob Agents Chemother 42(6):1495–1498

    Article  CAS  Google Scholar 

  • Alqasoumi SI, Al-Taweel AM, Alafeefy AM, Noaman E, Ghorab MM (2010) Discovering some novel tetrahydroquinoline derivatives bearing the biologically active sulfonamide moiety as a new class of antitumor agents. Eur J Med Chem 45(5):1849–1853

    Article  CAS  Google Scholar 

  • Barness EC, Bezerra-Gomez P, Nett M, Dandamycin HC, Chandrananimycin E (2015) benzoxazines from streptomycesgriseus. J Antibiot 68:463

    Article  Google Scholar 

  • Bates AD, Maxwell A (2005) DNA Topology. Oxford University Press, Oxford

    Google Scholar 

  • Boothroyd B, Clark ER (1952) Aminophenoxazines as possible antitubercular agents. J. Chem. Soc. 1499

  • Chen Z, Xu W, Liu K, Yang S, Fan H, Bhadury PS, Zhang DY (2010) Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules 9 15(12):9046–9056

    Article  CAS  Google Scholar 

  • Chu Daniel TUS (1986) Pyrido[3,2,1-k]phenoxazines and antibacterial use. Chem Abstr 104:109663k

    Google Scholar 

  • Chu DTW, Maleczka RE (1987) Synthesis of 4-oxo-4H–quino[2,3,4-i,j][1,4]-benoxazine-5-carboxylic acid derivatives. J Heterocycl Chem 24:453–456

    Article  CAS  Google Scholar 

  • Eshghi H, Rahimizadeh M, Zokaei M, Eshghi S, Faghihi Z, Tabasi E, Kihanya M (2011) Synthesis and antimicrobial activity of some new macrocyclic bis-sulphonamides and disulphides. Eur Jour Chem 2(1):47–50

    Article  CAS  Google Scholar 

  • Gross CH, Parsons JD, Grossman TH, Charifson PS, Bellon S, Jernee J, Dwyer M, Chambers SP, Markland W, Botfield M, Scott A, Raybuck (2003) Active-site residues of Escherichia coli DNA Gyrase required in coupling ATP hydrolysis to DNA supercoiling and amino acid substitutions leading to Novobiocin resistance. Antimicrob Agents Chemother 47(3):1037–1046. https://doi.org/10.1128/AAC.47.3.1037-1046.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harton JK, Thimmaiah KN, Harwood FC, Kuttesch JF, Houghton PJ (1993) Pharmacological characterization of n-substituted phenoxazines directed towards reversing vinca alkaloids resistance in multi drug resistant cancer cells. Mol. Pharmocol. Abstra 44:552–559

    Google Scholar 

  • Hooper DC (1998) Structure of grepafloxacin relative to activity and safety profile. Clinical Microbiology and Infection 4(1):515–520. https://doi.org/10.1111/j.1469-0691.1998.tb00684.x

    Article  CAS  Google Scholar 

  • Ibeanu FN, Onoabedje EA, Ibezim A, Okoro UC (2018) Synthesis, characterization, computational and biological study of novel azabenzo[a]phenothiazine and azabenzo[b]phenoxazine heterocycles as potential antibiotic agent. Med Chem Res. https://doi.org/10.1007/s00044-017-2131-3

    Article  CAS  Google Scholar 

  • Lopez M, Drillaud N, Bornaghi LF, Pouslen SA (2009) Synthesis of s-glycosyl primary sulphonamides. J Org Chem 74(7):2811–2816

    Article  CAS  Google Scholar 

  • Marble A (1971) Glibenclamide, a new sulphonylurea: wither oral hypoglycaemic agents? Drugs 1(2):109–115

    Article  CAS  Google Scholar 

  • Maxwell A (1997) DNA gyrase as a drug target. Trends Microbiol 5:102–109

    Article  CAS  Google Scholar 

  • Miller LH, Baruch DI, Marsh K, Doumbo OK (2002) The pathogenic basis of malaria. Nature 7 415(6872):673–679

    Article  CAS  Google Scholar 

  • Okafor CO (1986) Synthesis, properties and uses of angular phenoxazines. Dyes Pigments l7(2):103–131

    Article  Google Scholar 

  • Okorie VC (2005) Principles of the pharmaceutical application of antimicrobial agents. Denmak Publishers, Enugu, Nigeria, p 45–47

    Google Scholar 

  • Onoabedje EA, Okoro UC, Sarkar A, Knight DW (2016) Functionalization of linear and angular phenothiazine and phenoxazine ring systems via Pd(0)Xphos mediated Suzuki-Miyaura cross-coupling reactions. J Heterocycl Chem 53(6):1787–1794

    Article  CAS  Google Scholar 

  • Onoabedje EA, Okoro UC, Sarkar A, Knight DW (2016) Synthesis and structure of new alkynyl derivatives of phenothiazine and phenoxazine. J Sulfur Chem 37(3):269–281. 10. 1080/17415993, 2015.1131827

    Article  CAS  Google Scholar 

  • Ozbek N, Katircioglu H, Karacan N, Baykal T (2007) Synthesis, characterization and antimicrobial activity of new aliphatic sulphonamides. Bioorg & Med Chem 15(15):5105–5109

    Article  Google Scholar 

  • Rádl S, Zikán V (1989) Synthesis and antimicrobial activity of some 3-oxo-3H–pyrido[3,2,1-kl]phenoxazine-2-carboxylic acids. Collect Czech Chem Commun 54:506–515

    Article  Google Scholar 

  • Rostom SAF (2006) Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulphonamide, sulfonylurea(-thiourea)pharmacophores, and some derived thiazole ring systems. Bioorg Med Chem 14(19):6475–6485

    Article  CAS  Google Scholar 

  • Scozzafava A, Owa T, Mastrolorenzo A, Supuran CT (2003) Anticancer and antiviral sulphonamides. Curr Med Chem 10(11):925–953

    Article  CAS  Google Scholar 

  • Setter SM, Iltz JL, Fincham JE, Cambell RK, Baker DE (2005) Phosphodiesterase 5 inhibitors for erectile dysfunction (2005). Ann Pharmacother 39(7-8):1286–1295

    Article  CAS  Google Scholar 

  • Shen CH, Wang YF, Kovalevsky AY, Harrison RW, Weber IT (2010) Amprenavir complexes with hiv-1 protease and its drug-resistant mutants altering hydrophobic clusters. FEBS J 277(18):3699–3714

    Article  CAS  Google Scholar 

  • Shimamoto T, Tomada A, Ishida R, Ohyashiki K (2001) Antitumor effects of a novel phenoxazine derivatives on human leukaemia cells (AACR). Ame-Asso. for. Cancer Res 7:704–708

    CAS  Google Scholar 

  • Threlfall EJ, Ward LR, Skinner JA, Rowe B (2009) Increase in multiple antibiotic resistance in nontyphoidal salmonellas from humans in England and Wales: A comparison of Data for 1994 and 1996. Microb Drug Resist 3(3):263. https://doi.org/10.1089/mdr.1997.3.263

    Article  Google Scholar 

  • Ueda Y, Takahashi Y, Yamashita H, Kaneko H, Mimori A (2011) genetic heterogeneity of hepatitis c virus in association with antiviral therapy determined by ultra-deep sequencing. Nihon Rinsho Meneki Gakkai Kaishi 6(9):24907

    Google Scholar 

  • Ugwu DI, Okoro UC, Chukwurah TD (2014) Nickel catalyzed synthesis of n-aryl and n-heteroaryl substituted benzene sulphonamides and their biological activity evaluation. Med Chem 4:357–360. 10417212151-0444.1000165

    Article  CAS  Google Scholar 

  • Vardayan RS, Hruby VJ (2006) Synthesis of essential drugs. Elsevier, Amsterdum, 499

  • Veber DF, Stephen RJ, Hung-Yuan C, Brian RS, Keith WW, Kenneth DK (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45(12):2615–2623. https://doi.org/10.1021/jm020017n)

    Article  CAS  PubMed  Google Scholar 

  • Venanzi LM (1958) Tetrahedral nickel (II) complexes and the factors determining their formation, part I. Bistriphenylphosphine nickel (II) compounds. J. Chem. Soc. 719-724

  • Wang JC (2009) A journey in the world of DNA rings and beyond. Annu Rev Biochem 78:31–54. https://doi.org/10.1146/annurev.biochem.78.030107.090101

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zhang YX, Wang M, Tan Y, Hu X, He H, Xiao C, You X, Wang Y, Gan M (2017) Neo-actinomycins A and B, natural antinomycins bearing the 5H-oxazolo[4,5-b]phenoxazine chromophore, from marine derived Streptomyces species IMBO94. Sci Rep 7:3591. https://doi.org/10.1038/s41598-017-03769-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Kiebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COx-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47(3):550–557

    Article  CAS  Google Scholar 

  • Yu X, Zhang M, Annamalai A, Bansod P, Narula G, Tse-Dinh -C, Sun D (2017) Synthesis, evaluation, and CoMFA study of fluoroquinophenoxazine derivatives as bacterial topoisomerase IA inhibitors. Eur J Med Chem 125:515–527. https://doi.org/10.1016/j.ejmech.2016.09.053

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman S, Innocenti A, Casini A, Ferry JG, Scozzafava A, Supuran CT (2004) Carbonic anhydrase inhibitors. Inhibition of the prokaryotic beta and gamma-class enzymes from archaea with sulfonamides. Bioorg & Med Chem Lett 14:6001–6006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercy A. Ezeokonkwo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezeokonkwo, M.A., Eze, C.C., Okafor, S.N. et al. Diazabenzo[a]phenoxazone sulphonamides: synthesis, in-silico and in-vitro antimicrobial studies. Med Chem Res 27, 2482–2493 (2018). https://doi.org/10.1007/s00044-018-2251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-018-2251-4

Keywords

Navigation