Skip to main content
Log in

Evaluation of 2-amino-6-nitrobenzothiazole derived hydrazones as acetylcholinesterase inhibitors: in vitro assays, molecular docking and theoretical ADMET prediction

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Acetylcholinesterase (AChE) is an important target for the treatment of neurodegenerative disorders. A library of 2-amino-6-nitrobenzothiazole-derived hydrazones was evaluated as inhibitors of AChE. The compounds inhibited AChE with IC50 values in nanomolar to micromolar range. N′-(5-chloro-2-oxoindolin-3-ylidene)-2-(6-nitrobenzothiazol-2-ylamino)acetohydrazide (35) showed strong inhibitory activity against AChE (IC50 = 0.0035 ± 0.005 µM), which was found to be ~0.6-fold active compared to donepezil and ~6.43-fold stronger compared to tacrine. Kinetic studies revealed that compound 35 exhibited a mixed type and reversible mode of enzyme inhibition. SAR studies disclosed several structural aspects significant for potency of these analogs. Molecular docking simulations and binding pose analysis of docked conformations revealed the significance of cumulative effects of hydrogen bonding and ππ interactions for effective stabilization of virtual ligand–AChE complexes. Conformational analysis of lead AChE inhibitor molecules led to the proposal of a five-point pharmacophore model essential for the AChE inhibition. Further, compound 35 presented antioxidant activity higher than ascorbic acid in the in vitro DPPH radical scavenging assay. Additionally, in silico molecular and ADMET properties of the synthesized compounds were predicted to explore their drug likeness for potential oral use as antineurodegenerative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alptuzun V, Prinz M, Horr V, Scheiber J, Radacki K, Fallarero A, Vuorela P, Engels B, Braunschweig H, Erciyas E, Holzgrabe U (2010) Interaction of (benzylidene-hydrazono)-1,4-dihydropyridines with beta-amyloid, acetylcholine, and butyrylcholine esterases. Bioorg Med Chem 18:2049–2059

    Article  PubMed  Google Scholar 

  • Alspach JD, Ingraham LL (1977) Inhibition of acetylcholinesterase by thiamine. A structure-function study. J Med Chem 20:161–164

    Article  CAS  PubMed  Google Scholar 

  • Andreani A, Burnelli S, Granaiola M, Guardigli M, Leoni A, Locatelli A, Morigi R, Rambaldi M, Rizzoli M, Varoli L, Roda A (2008) Chemiluminescent high-throughput microassay applied to imidazo [2,1-b]thiazole derivatives as potential acetylcholinesterase and butyrylcholinesterase inhibitors. Eur J Med Chem 43:657–661

    Article  CAS  PubMed  Google Scholar 

  • Bag S, Tulsan R, Sood A, Datta S, Torok M (2013) Pharmacophore modeling, virtual and in vitro screening for acetylcholinesterase inhibitors and their effects on amyloid-β self-assembly. Curr Comput Aided Drug Des 9:2–14

    CAS  PubMed  Google Scholar 

  • Brimijoin S (1983) Molecular forms of acetylcholinesterase in brain, nerve and muscle: nature, localization and dynamics. Prog Neurobiol 21:291–322

    Article  CAS  PubMed  Google Scholar 

  • Carletti E, Colletier J, Dupeux F, Trovaslet M, Masson M, Nachon F (2010) Structural evidence that human acetylcholinesterase inhibited by Tabun ages through O-dealkylation. J Med Chem 53:4002–4008

    Article  CAS  PubMed  Google Scholar 

  • Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12:4377–4387

    Article  CAS  PubMed  Google Scholar 

  • Cavalli A, Bolognesi ML, Minarini A, Rosini M, Tumiatti V, Recanatini M, Melchiorre C (2008) Multi-targetdirected ligands to combat neurodegenerative diseases. J Med Chem 51:347–372

    Article  CAS  PubMed  Google Scholar 

  • Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, Franklin MC, Height JJ (2012) Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem 55:10282–10286

    Article  CAS  PubMed  Google Scholar 

  • Chikhale H, Lade K, Joshi P, Kudale S, Nerkar A, Sawant S (2012) In silico design, synthesis and pharmacological screening of some quinazolinones as possible GABAA receptor agonists for anticonvulsant activity. Int. J Pharm Pharm Sci 4:466–469

    CAS  Google Scholar 

  • Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL (2010) Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187:10–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Gella A, Durany N (2009) Oxidative stress in Alzheimer’s disease. Cell Adh Migr 3:88–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Geula C, Mesulam MM (1989) Cortical cholinergic fibers in aging and Alzheimer’s disease: a morphometric study. Neuroscience 33:469–481

    Article  CAS  PubMed  Google Scholar 

  • Goedert M, Spillantini MG (2006) A century of Alzheimer’s disease. Science 314:777–781

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS, Morris GM, Olson AJ (1996) Automated docking of flexible ligands: applications of autodock. J Mol Recognit 9:1–5

    Article  CAS  PubMed  Google Scholar 

  • Grisaru D, Sternfeld M, Eldor A, Glick D, Soreq H (1999) Structural roles of acetylcholinesterase variants in biology and pathology. Eur J Biochem 264:672–686

    Article  CAS  PubMed  Google Scholar 

  • Heller M, Hanahan DJ (1972) Human erythrocyte membrane bound enzyme acetylcholinesterase. Biochim Biophys Acta 255:251–272

    Article  CAS  PubMed  Google Scholar 

  • Kryger G, Harel M, Giles K, Toker L, Velan B, Lazar A, Kronman C, Barak D, Ariel N, Shafferman A, Silman I, Sussman JL (2000) Structures of recombinant native and E202Q mutant human acetylcholinesterase complexed with the snake-venom toxin fasciculin-II. Acta Crystallogr Sect D Biol Crystallogr 56:1385–1394

    Article  CAS  Google Scholar 

  • Kryger G, Silman I, Sussman JL (1999) Structure of acetylcholinesterase complexed with E2020 (Aricept): implications for the design of new anti-Alzheimer drugs. Structure 7:297–307

    Article  CAS  PubMed  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  • Massoulie J, Pezzementi L, Bon S, Krejci E, Vallette FM (1993) Molecular and cellular biology of cholinesterases. Prog Neurobiol 41:31–91

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga Y, Tanaka T, Yoshinaga K, Ueki S, Hori Y, Eta R (2011) Acotiamide hydrochloride (Z-338), a new selective acetylcholinesterase inhibitor, enhances gastric motility without prolonging QT interval in dogs: comparison with cisapride, itopride, and mosapride. J Pharmacol Exp Ther 336:791–800

    Article  CAS  PubMed  Google Scholar 

  • Molinspiration Cheminformatics, Bratislava, Slovak Republic. http://molinspiration.com/services/properties.html

  • Mustafa SM, Naira VA, Chittoorb JP, Krishnapillaic S (2004) Synthesis of 1,2,4-triazoles and thiazoles from thiosemicarbazide and its derivatives. Mini Rev Org Chem 1:375–385

    Article  CAS  Google Scholar 

  • Ozturan OE, Tan OU, Ozadali K, Kucukkilinç T, Balkan A, Uçar G (2013) Synthesis, molecular modeling and evaluation of novel N′-2-(4-benzylpiperidin-/piperazin-1-yl)acylhydrazone derivatives as dual inhibitors for cholinesterases and Aβ aggregation. Bioorg Med Chem Lett 23:440–443

    Article  Google Scholar 

  • Prinz M, Parlar S, Bayraktar G, Alptuzun V, Erciyas E, Fallarero A, Karlsson D, Vuorela P, Burek M, Forster C, Turunc E, Armagan G, Yalcin A, Schiller C, Leuner K, Krug M, Sotriffer CA, Holzgrabe U (2013) 1,4-Substituted 4-(1H)-pyridylene-hydrazone-type inhibitors of AChE, BuChE, and amyloid-β aggregation crossing the blood-brain barrier. Eur J Pharm Sci 49:603–13

    Article  CAS  PubMed  Google Scholar 

  • Rajesh MP, Natvar JP (2011) In vitro antioxidant activity of coumarin compounds by DPPH, superoxide and nitric oxide free radical scavenging methods. J Adv Pharm Educ Res 1:52–68

    Google Scholar 

  • Scarpini E, Scheltens P, Feldman H (2003) Treatment of Alzheimer’s disease: current status and new perspectives. Lancet Neurol 2:539–547

    Article  CAS  PubMed  Google Scholar 

  • Sengupta AK, Garg M (1980) New 5-arylamino-2[N-(2’-mercaptoacetylamino-4’-arylthiazolo)]thiadiazoles(III): as AChE inhibitors. J Indian Chem Soc 57:1241–1243

    CAS  Google Scholar 

  • Shaw FH, Bentley GA (1953) The pharmacology of some new anticholinesterases. Aust J Exp Biol Med Sci 31:573–576

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui N, Arshad MF, Ahsan W, Alam MS (2009) Thiazoles: a valuable insight into the recent advances and biological activities. Int J Pharm Sci Drug Res 1:136–143

    CAS  Google Scholar 

  • Szelenyi JG, Bartha E, Hollan SR (1982) Acetylcholinesterase activity of lymphocyctes: an enzyme characteristic of T-cells. Br J Haematol 50:241–245

    Article  CAS  PubMed  Google Scholar 

  • Talesa VN (2001) Acetylcholinesterase in Alzheimer’s disease. Mech Ageing Dev 122:1961–1969

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Radic Z (1994) The cholinesterases: from genes to proteins. Ann Rev Pharmacol Toxicol 34:281–320

    Article  CAS  Google Scholar 

  • Thomas D, Karle CA, Kiehn J (2006) The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr Pharm Des 12:2271–2283

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RKP, Ayyannan SR (2016) Design, synthesis, and evaluation of 2-amino-6-nitrobenzothiazole-derived hydrazones as MAO inhibitors: role of the methylene spacer group. ChemMedChem 11:1551–67

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RKP, Goshain O, Ayyannan SR (2013) Design, synthesis, in vitro MAO-B inhibitory evaluation and computational studies of some 6-nitrobenzothiazole-derived semicarbazones. ChemMedChem 8:462–474

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RKP, Krishnamurthy S, Ayyannan SR (2016a) Discovery of 3-hydroxy-3-phenacyloxindole analogues of isatin as potential monoamine oxidase inhibitors. ChemMedChem 11:119–132

    Article  CAS  PubMed  Google Scholar 

  • Tripathi RKP, Rai GK, Ayyannan SR (2016b) Exploration of a library of 3,4-(methylenedioxy)aniline-derived semicarbazones as dual inhibitors of monoamine oxidase and acetylcholinesterase: design, synthesis, and evaluation. ChemMedChem 11:1145–1160

    Article  CAS  PubMed  Google Scholar 

  • Trullas R, Skolnick P (1993) Differences in fear motivated behaviors among inbred mouse strains. Psychopharmacology 111:323–331

    Article  CAS  PubMed  Google Scholar 

  • Utku S, Gokce M, Orhan I, Sahin MF (2011) Synthesis of novel 6-substituted 3(2H)-pyridazinone-2-acetyl-2-(substituted/-nonsubstitutedbenzal)hydrazone derivatives and acetylcholinesterase and butyrylcholinesterase inhibitory activities in vitro. Arzneimittelforschung 61:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Adedoyin A (2003) ADME-Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today 8:852–61

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Sairam Krishnamurthy, Associate Professor of Pharmacology, Department of Pharmaceutical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi for his invaluable assistance in pharmacological screening. First author (Rati K. P. Tripathi) thanks the Indian Council of Medical Research, New Delhi (India) for the award of Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil Raja Ayyannan.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, R.K.P., Ayyannan, S.R. Evaluation of 2-amino-6-nitrobenzothiazole derived hydrazones as acetylcholinesterase inhibitors: in vitro assays, molecular docking and theoretical ADMET prediction. Med Chem Res 27, 709–725 (2018). https://doi.org/10.1007/s00044-017-2095-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-017-2095-3

Keywords

Navigation