Skip to main content
Log in

Synthesis, spectral characterization, and effective antifungal evaluation of 1H-tetrazole containing 1,3,5-triazine dendrimers

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Thirteen, 1,3,5-triazine core containing tetrazole dendrimeric chalcones have been synthesized in three steps. In the first step (1-(4-(1H-tetrazole-1-yl)phenyl)ethanone) is synthesized from sodium azide and triethyl orthoformate. In the second step, the first-generation of dendrimer, 2,4,6-(tris(tetrazole-1-yl-(4-acetylphenyl))-1,3,5-triazine(G1) is generated from cyanuric chloride and 4-tetrazoylacetophenone by Friedel–Crafts reaction. In the third step, 2,4,6-tris(tetrazol-1-yl-(4-phenyl(3-arylpropene-1-on-1-yl))-1,3,5-triazine(G2) dendrimers are prepared from G1 by Claisen–Schmidt reaction with appropriate aldehydes in ethanol at room temperature. The synthesized compounds (G2, 7a–m) are characterized by Fourier transform infrared (FT-IR), Mass, Matrix-assisted laser ionization Time-of-flight (MALDI-TOF), 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and elemental analysis. Antifungal activities of triazine-based dendrimeric chalcones (7a–m) are investigated by minimum inhibition concentration method at different concentrations. Some compounds exhibit moderate activities against tested organisms. Compounds 7b, 7c, and 7f showed good activities and 7l and 7m are emerged as lead molecules showing excellent antifungal activities against a panel of fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1.
Fig. 2

Similar content being viewed by others

References

  • Astruc D, Boisselier E, Ornelas C (2010) Dendrimers designed for functions: from physical, photo physical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev 110(4):1857–1959

    Article  CAS  PubMed  Google Scholar 

  • Dichtel WR et al. (2004) Singlet oxygen generation via two-photon excited FRET. J Am Chem Soc 126(17):5380–5381

    Article  CAS  PubMed  Google Scholar 

  • D’Emanuele A, Attwood D (2005) Dendrimer-drug interactions. Adv Drug Deliv Rev 57(15):2147–2162

    Article  PubMed  Google Scholar 

  • Esfand R and Tomalia DA (2001) Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov Today 6(8):427–436

    Article  CAS  PubMed  Google Scholar 

  • Frechet JM (1994) Functional polymers and dendrimers: reactivity, molecular architecture and interfacial energy. Science 263(5154):1710–1715

    Article  CAS  PubMed  Google Scholar 

  • Huh AJ and Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  • Janiszewska J, Sowińska M, Rajnisz A, Solecka J, Łącka I, Milewski S, Urbańczyk-Lipkowska Z. (2012) Novel dendrimeric lipopeptides with antifungal activity, Bioorg Med Chem Lett. 22(3) 1388–1393

    Article  CAS  PubMed  Google Scholar 

  • Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 8(14):1225–1236

    Article  PubMed  Google Scholar 

  • Klajnert B, Bryszewska M (2001) Dendrimers: properties and applications. Acta Biochi Pol 48(1):199–208

    Google Scholar 

  • Lee CC, MacKay JA, Frechet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23(12):1517–1526

    Article  CAS  PubMed  Google Scholar 

  • Majoros IJ, Williams CR, Baker Jr. JR (2008) Current dendrimer applications in cancer diagnosis and therapy. Curr Top Med Chem 8(14):1165–1179

    Article  CAS  PubMed  Google Scholar 

  • Martic S, Labib M, Shipman PO, Kraatz HB (2011) Ferrocene-peptido conjugates: from synthesis to sensory applications. Dalton Trans 40(28):7264–7290

    Article  CAS  PubMed  Google Scholar 

  • Medina SH, El-Sayed ME (2009) Dendrimers as carriers for delivery of chemotherapeutic agents. Chem Rev 109(7):3141–3157.

    Article  CAS  PubMed  Google Scholar 

  • Mur VI (1964) 2,4,6-trichloro-1,3,5-triazine and its future applications Russian. Chem Rev 33(2):92–103

    Google Scholar 

  • Naylor AM, Porter DW, Lincoln DW (1990) Central administration of corticotrophin-releasing factor in the sheep: effects on secretion of gonadotrophins, prolactin and cortisol. J Endocrinol 124(1):117–125.

  • Polcyn P, Jurczak M, Rajnisz A, Solecka J, Urbanczyk-Lipkowska Z (2009) Design of antimicrobially active small amphiphilic peptide dendrimers. Molecules 14(10):3881–3905

    Article  CAS  PubMed  Google Scholar 

  • Roglin L, Lempens EH, Meijer EW (2011) A synthetic “tour de force”: well-defined multivalent and multimodal dendritic structures for biomedical applications. Angew Chem Int Ed Engl 50(1):102–112

    Article  PubMed  Google Scholar 

  • Steffensen MB, Hollink E, Kuschel F, Bauer M, Simanek EE (2006) Dendrimers Based on [1,3,5]-Triazines. J Polym Sci A Polym Chem 44(11):3411–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications--reflections on the field. Adv Drug Deliv Rev 57(15):2106–2129

    Article  CAS  PubMed  Google Scholar 

  • Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P (1985) A new class of polymers: Starburst-Dendritic macromolecules. Polym J 17:117–132.

  • Tomalia A, Uppuluri S, Swanson DR, Li J (2000) Dendrimers as reactive modules for the synthesis of new structure-controlled, higher-complexity megamers. Pure and Applied Chemistry 72(12):2343–2358

    Article  CAS  Google Scholar 

  • Zeng F, Zimmerman SC (1997) Dendrimers in supramolecular chemistry: from molecular recognition to self-assembly. Chem Rev 97(5):1681–1712

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors S.Vembu is thankful to UGC, New Delhi for providing Financial Assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mannathusamy Gopalakrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vembu, S., Pazhamalai, S. & Gopalakrishnan, M. Synthesis, spectral characterization, and effective antifungal evaluation of 1H-tetrazole containing 1,3,5-triazine dendrimers. Med Chem Res 25, 1916–1924 (2016). https://doi.org/10.1007/s00044-016-1627-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1627-6

Keywords

Navigation