Skip to main content
Log in

Molecular modeling and correlation of PFI1625c-peptide models of bioactive peptides with antimalarial properties

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Bioactive peptides are active against the malaria parasite growth through targeting various stages of life cycle, but their mechanism of action is not fully understood. PFI1625c, a metalloprotease present in Plasmodium falciparum, is a potential drug target, and it shows best binding to peptide P550 (LVIVAKRA). Out of 20 selected antimalarial peptides, 4 peptides namely Dermaseptin S3, Cyclosporin A, Angiotensin II, and PcFK2 show high affinity with PFI1625c. Dermaseptin S3 is making polar contacts and hydrophobic interactions with the residues present within the catalytic site of PFI1625c. The affinity of bioactive peptides toward PFI1625c and anti-malarial activity of peptide shows a strong correlation (R = 0.921), indicating PFI1625c as a potential target behind their antimalarial activity. Thus, current study confirms the involvement of PFI1625c behind the antimalarial activity of tested bioactive peptides, and the result can be helpful to design better bio-compatible antimalarial drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aminake MN, Schoof S et al (2011) Thiostrepton and derivatives exhibit antimalarial and gametocytocidal activity by dually targeting parasite proteasome and apicoplast. Antimicrob Agents Chemother 55(4):1338–1348

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andrusier N, Nussinov R et al (2007) FireDock: fast interaction refinement in molecular docking. Proteins 69(1):139–159

    Article  CAS  PubMed  Google Scholar 

  • Boman HG, Wade D et al (1989) Antibacterial and antimalarial properties of peptides that are cecropin-melittin hybrids. FEBS Lett 259(1):103–106

    Article  CAS  PubMed  Google Scholar 

  • Bruce-Chwatt LJ (1982) Qinghaosu: a new antimalarial. Br Med J (Clin Res Ed) 284(6318):767–768

    Article  CAS  Google Scholar 

  • Choi SJ, Parent R et al (2004) Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett 572(1–3):109–117

    Article  CAS  PubMed  Google Scholar 

  • Conde R, Zamudio FZ et al (2000) Scorpine, an anti-malaria and anti-bacterial agent purified from scorpion venom. FEBS Lett 471(2–3):165–168

    Article  CAS  PubMed  Google Scholar 

  • Eda K, Eda S et al (2004) Identification of peptides targeting the surface of Plasmodium falciparum-infected erythrocytes using a phage display peptide library. Am J Trop Med Hyg 71(2):190–195

    CAS  PubMed  Google Scholar 

  • Efferth T, Romero MR et al (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47(6):804–811

    Article  CAS  PubMed  Google Scholar 

  • Efron L, Dagan A et al (2002) Direct interaction of dermaseptin S4 aminoheptanoyl derivative with intraerythrocytic malaria parasite leading to increased specific antiparasitic activity in culture. J Biol Chem 277(27):24067–24072

    Article  CAS  PubMed  Google Scholar 

  • Erdmann K, Cheung BW et al (2008) The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 19(10):643–654

    Article  CAS  PubMed  Google Scholar 

  • Fairhurst RM, Nayyar GM et al (2012) Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am J Trop Med Hyg 87(2):231–241

    Article  PubMed Central  PubMed  Google Scholar 

  • Gao B, Rodriguez Mdel C et al (2009) AdDLP, a bacterial defensin-like peptide, exhibits anti-plasmodium activity. Biochem Biophys Res Commun 387(2):393–398

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Xu J et al (2010) Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie 92(4):350–359

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JK, Shaool D et al (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem 272(50):31609–31616

    Article  CAS  PubMed  Google Scholar 

  • Gumila C, Ancelin ML et al (1997) Characterization of the potent in vitro and in vivo antimalarial activities of ionophore compounds. Antimicrob Agents Chemother 41(3):523–529

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gwadz RW, Kaslow D et al (1989) Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect Immun 57(9):2628–2633

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kitjaroentham A, Suthiphongchai T et al (2006) Effect of metalloprotease inhibitors on invasion of red blood cell by Plasmodium falciparum. Acta Trop 97(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Hecker KD et al (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(Suppl 9B):71S–88S

    Article  CAS  PubMed  Google Scholar 

  • Krugliak M, Feder R et al (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44(9):2442–2451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kuntal BK, Aparoy P et al (2010) EasyModeller: A graphical interface to MODELLER. BMC Res Notes 3:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Larkin MA, Blackshields G et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Lhouvum K, Ramakrishnan V et al (2013) Insight into structural and biochemical determinants of substrate specificity of PFI1625c: correlation analysis of protein-peptide molecular models. J Mol Graph Model 43:21–30

    Article  CAS  PubMed  Google Scholar 

  • Maciel C, de Oliveira Junior VX et al (2008) Anti-plasmodium activity of angiotensin II and related synthetic peptides. PLoS ONE 3(9):e3296

    Article  PubMed Central  PubMed  Google Scholar 

  • McGowan S, Porter CJ et al (2009) Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc Natl Acad Sci USA 106(8):2537–2542

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Muro Urista C, Alvarez Fernandez R et al (2011) Review: production and functionality of active peptides from milk. Food Sci Technol Int 17(4):293–317

    Article  CAS  PubMed  Google Scholar 

  • Nagaraj G, Uma MV et al (2001) Antimalarial activities of peptide antibiotics isolated from fungi. Antimicrob Agents Chemother 45(1):145–149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nickell SP, Scheibel LW et al (1982) Inhibition by cyclosporin A of rodent malaria in vivo and human malaria in vitro. Infect Immun 37(3):1093–1100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Phyo AP, Nkhoma S et al (2012) Emergence of artemisinin-resistant malaria on the western border of Thailand: a longitudinal study. Lancet 379(9830):1960–1966

    Article  PubMed Central  PubMed  Google Scholar 

  • Ponpuak M, Klemba M et al (2007) A role for falcilysin in transit peptide degradation in the Plasmodium falciparum apicoplast. Mol Microbiol 63(2):314–334

    Article  CAS  PubMed  Google Scholar 

  • Rajanbabu V, Chen JY (2011) Applications of antimicrobial peptides from fish and perspectives for the future. Peptides 32(2):415–420

    Article  CAS  PubMed  Google Scholar 

  • Reddy KV, Yedery RD et al (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Sarmadi BH, Ismail A (2010) Antioxidative peptides from food proteins: a review. Peptides 31(10):1949–1956

    Article  CAS  PubMed  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y et al (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 1(33):W363–W367 Web Server issue

    Article  Google Scholar 

  • Shahabuddin M, Fields I et al (1998) Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp Parasitol 89(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Zhang Q et al (2004) BioPD: a web-based information center for bioactive peptides. Regul Pept 120(1–3):1–3

    Article  CAS  PubMed  Google Scholar 

  • Sinnis P, Willnow TE et al (1996) Remnant lipoproteins inhibit malaria sporozoite invasion of hepatocytes. J Exp Med 184(3):945–954

    Article  CAS  PubMed  Google Scholar 

  • St Georgiev V (1990) Immunomodulatory activity of small peptides. Trends Pharmacol Sci 11(9):373–378

    Article  CAS  PubMed  Google Scholar 

  • Villa-Hernandez O, Hernandez-Orihuela L et al (2009) Novel antimicrobial peptides isolated from skin secretions of the Mexican frog Hyla eximia. Protein Pept Lett 16(11):1371–1378

    Article  CAS  PubMed  Google Scholar 

  • Wang HX, Ng TB (1999) Natural products with hypoglycemic, hypotensive, hypocholesterolemic, antiatherosclerotic and antithrombotic activities. Life Sci 65(25):2663–2677

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Department of Biotechnology; Govt of India Grants (BT/PR13436/MED/12/450/2009) to V.T. KL acknowledges the financial support in the form of fellowship from Indian Institute of Technology-Guwahati, Assam, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Trivedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 22337 kb)

Supplementary material 2 (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lhouvum, K., Bhuyar, K.S. & Trivedi, V. Molecular modeling and correlation of PFI1625c-peptide models of bioactive peptides with antimalarial properties. Med Chem Res 24, 1527–1533 (2015). https://doi.org/10.1007/s00044-014-1232-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1232-5

Keywords

Navigation