Skip to main content

Advertisement

Log in

Development of reversible glutamine conjugate of methotrexate for enhanced brain delivery

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Poor permeability of methotrexate across blood brain barrier limits its scope for application against brain cancer. Glutamine is transported to brain actively by multiple amino acid transporters and protects against complications of chemotherapy. To use glutamine as a carrier, a reversible conjugate of methotrexate was developed with structural features of glutamine. This was stable and released methotrexate effectively. The brain uptake was enhanced significantly

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Sarraf H, Preston JE, Segal MB (1995) The entry of acidic amino acids into brain and CSF during development, using in situ perfusion in the rat. Dev Brain Res 90:151–158

    Article  CAS  Google Scholar 

  • Al-Sarraf H, Preston JE, Segal MB (1997a) Changes in the kinetics of the acidic amino acid brain and CSF uptake during development in the rat. Dev Brain Res 102:127–134

    Article  CAS  Google Scholar 

  • Al-Sarraf H, Preston JE, Segal MB (1997b) Acidic amino acid accumulation by rat choroid plexus during development. Dev Brain Res 102:47–52

    Article  CAS  Google Scholar 

  • Babbar AK, Singh K, Goel HC (2000) Evaluation of 99mTc labeled Photosan-3, a heamatoporphyrin derivative, as a potential radiopharmaceutical for tumor scintigraphy. Nucl Med Biol 27:419–426

    Article  CAS  PubMed  Google Scholar 

  • Batchelor T, Carson K, O’Neill A (2003) Treatment of primary cns lymphoma with methotrexate and deferred radiotherapy: a report of NABTT 96–07. J Clin Oncol 21:1044–1049

    Article  CAS  PubMed  Google Scholar 

  • Bauwens M, Lahoutte T, Kersemans K (2007) d- and l-[123I]-2-I-phenylalanine show a long tumour retention compared with d- and l-[123I]-2-I-tyrosine in R1M rhabdomyosarcoma tumour-bearing Wag/Rij rats. Contrast Media Mol Imaging 2:172–177

    Article  CAS  PubMed  Google Scholar 

  • Begleiter A, Lam H, Grover J (1979) Evidence for active transport of melphalan by amino acid carriers in L5178Y lymphoblasls in vitro. Cancer Res 39:353–359

    CAS  PubMed  Google Scholar 

  • Combe B, Edno L, Lafforgue P (1995) Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients. Rheumatology 34:421–428

    Article  CAS  Google Scholar 

  • Czeredys M, Mysiorek C, Kulikova N, Samluk L, Berezowski V, Cecchelli R, Nale KA (2008) A polarized localization of amino acid/carnitine transporter B0,+ (ATB0,+)in the blood–brain barrier. Biochem Biophys Res Commun 376:267–270

    Article  CAS  PubMed  Google Scholar 

  • De Angelis LM, Seiferheld W, Schold SC (2002) Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: radiation therapy oncology group study 93-10. J Clin Oncol 20:4643–4648

    Article  Google Scholar 

  • Donehower RC, Hande KR, Drake JC (1979) Presence of 2,4-diamino-N10-methylpteroic acid after high-dose methotrexate. Clin Pharmacol Ther 26:63–72

    CAS  PubMed  Google Scholar 

  • Drewes LR, Conway WP, Gilboe DD (1977) Net amino acid transport between plasma and erythrocytes and perfused dog brain. Am J Physiol 233:320–325

    Google Scholar 

  • Ennis SR, Kawai N, Ren XD, Abdelkarim GE, Keep RF (1998) Glutamine uptake at the blood–brain barrier is mediated by N-system transport. J Neurochem 71(6):2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Erdlenbruch B, Schinkhof C, Kugler W (2003) Intracarotid administration of short-chain alkylglycerols for increased delivery of methotrexate to the rat brain. Br J Pharmacol 139:685–694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gabathuler R (2010) Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol Dis 37:48–57

    Article  CAS  PubMed  Google Scholar 

  • Geiera EG, Schlessingera A, Fana H, Gable JE, Irwina JJ, Salia A, Giacominia KM (2013) Structure-based ligand discovery for the large-neutral amino acid transporter 1, LAT-1. PNAS 110(14):5480–5485

    Article  Google Scholar 

  • Goldenberg G, Lam H, Begleiter A (1979) Active carrier-mediated transport of melphalan by two separate amino acid transport systems in LPC-1 plasmacytoma cells in vitro. J Biol Chem 254:1057–1064

    CAS  PubMed  Google Scholar 

  • Gourav K, Goel RK, Shukla M, Pandey M (2012) Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Indian J Med Paediatr Oncol 33(1):13–20

    Article  Google Scholar 

  • Greig NH, Momma S, Sweeney DJ (1987) Facilitated transport of melphalan at the rat blood–brain barrier by the large neutral amino acid carrier system. Cancer Res 47:1571–1576

    CAS  PubMed  Google Scholar 

  • Hawkins R, DeJoseph MR, Hawkins PA (1995) Regional brain glutamate transport in rats at normal and raised concentrations of circulating glutamate. Cell Tissue Res 281:207–214

    Article  CAS  PubMed  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Viña JR (2006) Structure of the blood–brain barrier and its role in the transport of amino acids. J Nutr 136(1):218–226

    Google Scholar 

  • Hellwig D, Gouverneur E, Schaefer A (2008) Para-[(123)I]iodo-l-phenylalanine in patients with pancreatic adenocarcinoma: tumour uptake, whole-body kinetics, dosimetry. Nuklearmedizin 47:220–224

    CAS  PubMed  Google Scholar 

  • Holmboe L, Andersen AM, Mørkrid L (2012) High dose methotrexate chemotherapy: pharmacokinetics, folate and toxicity in osteosarcoma patients. Br J Clin Pharmacol 73:106–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kersemans V, Cornelissen B, Bacher K (2005) In vivo evaluation and dosimetry of 123I-2-iodo-d-phenylalanine, a new potential tumor-specific tracer for SPECT, in an R1M rhabdomyosarcomaathymic mouse model. J Nucl Med 46:2104–2111

    CAS  PubMed  Google Scholar 

  • Laulloo SJ, Khodaboccus A, Hemraz U (2007) Use of Di-tert-butyl-dicarbonate both as a protecting and activating group in the synthesis of dipeptides. Synth Commun 37:4191–4197

    Article  CAS  Google Scholar 

  • Martin B, Posseme F, Barbier CL (2002) (Z)-1,4-Diamino-2-butene as a vector of boron, fluorine, or iodine for cancer therapy and imaging: synthesis and biological evaluation. Bioorg Med Chem 10:2863–2871

    Article  CAS  PubMed  Google Scholar 

  • Muller M, dela Peria A, Derendrof H (2004) Issues in pharmacokinetics and pharmacodynamics of antinfective agents: distribution to tisssues. Antimicrob Agents Chemother 48:1441–1453

    Article  PubMed Central  PubMed  Google Scholar 

  • Neuwelt EA, Diehl JT, Vu LH (1981) Monitoring of methotrexate delivery in patients with malignant brain tumors after osmotic blood–brain barrier disruption. Ann Intern Med 94:449–454

    Article  CAS  PubMed  Google Scholar 

  • Norrby SR (1985) Role of cephalosporins in the treatment of bacterial meningitis in adults. Overview with special emphasis on ceftazidime. Am J Med 79:56–61

    Article  CAS  PubMed  Google Scholar 

  • O’Brien P, Roos D, Pratt G (2000) Phase II multicenter study of brief single-agent methotrexate followed by irradiation in primary CNS lymphoma. J Clin Oncol 18:519–526

    PubMed  Google Scholar 

  • Ozeki T, Hashizawa K, Kaneko D (2010) Treatment of rat brain tumors using sustained-release of camptothecin from poly(lactic-co-glycolic acid) microspheres in a thermoreversible hydrogel. Chem Pharm Bull 58:1142–1147

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2012) Drug transport across the blood–brain barrier. J Cereb Blood Flow Metab 32:1959–1972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peura L, Malmioja K, Huttunen K (2013) Erratum to: design, synthesis and brain uptake of lat1-targeted amino acid prodrugs of dopamine. Pharm Res 30:1714–1717

    Article  CAS  Google Scholar 

  • Poulin P, Theil FP (2000) A priori prediction of tissue: plasma partition coefficients of drugs to facilitate the use of physiologically-based pharmacokinetic models in drug discovery. Pharm Sci 89:16–35

    Article  CAS  Google Scholar 

  • Rajput N, Dumka VK, Sandhu HS (2012) Disposition kinetics and in vitro plasma protein binding of cefpirome in cattle. Vet Arhiv 82:1–9

    CAS  Google Scholar 

  • Rao TS, Baker GB, Coutts RT (1987) N-(3-chloropropyl) phenylethylamine as a possible prodrug of beta-phenylethylamine: studies in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 11:301–308

    Article  CAS  PubMed  Google Scholar 

  • Reddy L, Sharma R, Chuttani K (2004) Etoposide-incorporated tripalmitin nanoparticles with different surface charge: formulation, characterization, radiolabeling, and biodistribution studies. AAPS J 6:55–64

    Article  PubMed Central  Google Scholar 

  • Samnick S, Romenik BF, Kubuschok B (2004) p-[123I]iodo-l-phenylalanine for detection of pancreatic cancer: basic investigations of the uptake characteristics in primary human pancreatic tumour cells and evaluation in in vivo models of human pancreatic adenocarcinoma. Eur J Nucl Med Mol Imaging 31:532–541

    Article  PubMed  Google Scholar 

  • Shingaki T, Inoue D, Furubayashi T (2010) Transnasal delivery of methotrexate to brain tumors in rats: a new strategy for brain tumor chemotherapy. Mol Pharm 7:1561–1568

    Article  CAS  PubMed  Google Scholar 

  • Simoes MF, Valente E, Gomez MJ (2009) Lipophilic pyrazinoic acid amide and ester prodrugs stability, activation and activity against M. tuberculosis. Eur J Pharm Sci 37:257–263

    Article  CAS  PubMed  Google Scholar 

  • Singhai AK, Jain S, Jain NK (1997) Evaluation of an aqueous injection of Ketoprofen. Pharmazie 52:149–151

    CAS  PubMed  Google Scholar 

  • Stubblefield MD, Vahdat LT, Balmaceda CM, Troxel AB, Hesdorffer CS, Gooch CL (2005) Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiologic study. Clin Oncol (R Coll Radiol) 17(4):271–276

    Article  CAS  Google Scholar 

  • Uchino H, Kanai Y, Kim DK, Wempe MF, Chairoungdua A, Morimoto E, Anders MW, Endou H (2002) Transport of amino acid-related compounds mediated byl-type amino acid transporter 1 (LAT1): insights into the mechanisms of substrate recognition. Mol Pharmacol 61:729–737

    Article  CAS  PubMed  Google Scholar 

  • Umapathy NS, Dun Y, Martin PM, Duplantier JN, Roon P, Prasad P, Smith SB, Ganapathy DV (2008) Expression and function of system N glutamine transporters (SN1/SN2 or SNAT3/SNAT5) in retinal ganglion cells invest. Ophthalmol Vis Sci 49(11):5151–5160

    Article  Google Scholar 

  • Vyas TK, Babbar AK, Sharma RK (2006) Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS Pharm Sci Tech 7:49–57

    Article  Google Scholar 

  • Wang L, Qu W, Lieberman BP (2011) Synthesis, uptake mechanism, characterisation and biological evaluation of 18F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents. Nucl Med Biol 38:53–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Widemann BC, Adamson PC (2006) Understanding and managing methotrexate nephrotoxicity. Oncologist 11:694–703

    Article  CAS  PubMed  Google Scholar 

  • Widemann BC, Sung E, Anderson L (2000) Pharmacokinetics and metabolism of the methotrexate metabolite, 2,4-diamino-N10-methylpteroic acid. J Pharmacol Exp Ther 294:894–901

    CAS  PubMed  Google Scholar 

  • Wu G, Barth RF, Yang W (2006) Targeted delivery of methotrexate to epidermal growth factor receptor–positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol Cancer Ther 5:52–59

    Article  CAS  PubMed  Google Scholar 

  • Zhou K, Khokhar JY, Zhao B (2013) First demonstration that brain CYP2D-mediated opiate metabolic activation alters analgesia in vivo. Biochem Pharmacol 85:1848–1855

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Anil Kumar Mishra, HOD and Joint Director, Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), Delhi for his permission and Dr. Krushna Chuttani, Scientist, INMAS for her help in carrying out radioscintigraphy experiments. We are also thankful to Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh for help in spectral characterisation and IPCA laboratories, Daman, India for providing methotrexate as gift sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhusan Subudhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.K., Subudhi, B.B. Development of reversible glutamine conjugate of methotrexate for enhanced brain delivery. Med Chem Res 24, 624–635 (2015). https://doi.org/10.1007/s00044-014-1172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1172-0

Keywords

Navigation