Skip to main content
Log in

Synthesis, biological evaluation, and molecular docking studies of pyrazolyl-acylhydrazone derivatives as novel anticancer agents

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A series of pyrazolyl-acylhydrazone derivatives (1e20e) have been designed and synthesized and their biologic activities were also evaluated for telomerase inhibition and tumor cell antiproliferation. Among all the compounds, 12e showed the most potent activity in vitro, which inhibited the growth of MCF-7 and B16-F10 cell lines with IC50 values of 0.57 ± 0.03 and 0.49 ± 0.07 μM, respectively. Compound 12e also exhibited significant telomerase inhibitory activity (IC50 = 1.9 ± 0.43 μM). The result of flow cytometry demonstrated that compound 12e induced cell apoptosis. Docking simulation was performed to insert compound 12e into the crystal structure of telomerase at ATP binding site to determine the probable binding model. Based on the preliminary results, compound 12e with potent inhibitory activity in tumor growth may be a potential anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal R, Kumar V, Tyagi P, Singh SP (2006) Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-3H/methyl-4-phenylpyrazoles. Bioorg Med Chem 14:1785–1791

    Article  CAS  PubMed  Google Scholar 

  • Anshu M, Mitchell SP, Rebecca CW, Trygve OT, Santosh KK (2004) EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis. Int J Oncol 24:703–710

    Google Scholar 

  • Argyle DJ, Nasir L (2003) Telomerase: a potential diagnostic and therapeutic tool in canine oncology. Vet Pathol 40:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bernhardt PV, Chin P, Sharpe PC, Richardson DR (2007) Hydrazone chelators for the treatment of iron overload disorders: iron coordination chemistry and biological activity. Dalton Trans 30:3232–3244

    Article  PubMed  Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352

    Article  CAS  PubMed  Google Scholar 

  • Boumendjel A, Boccard J, Carrupt PA, Nicolle E, Blanc M, Geze A, Choisnard L, Wouessidjewe D, Matera EL, Dumontet C (2008) Antimitotic and antiproliferative activities of chalcones: forward structure–activity relationship. J Med Chem 51:2307–2310

    Article  CAS  PubMed  Google Scholar 

  • Cabri W, Vesci L, Pisano C (2009) N-Hydroxy-(4-oxime)-cinnamide: a versatile scaffold for the synthesis of novel histone deacetilase (HDAC) inhibitors. Bioorg Med Chem Lett 19:3694

    Article  Google Scholar 

  • Elzbieta B, Magdalena M, Ingo PL, Peter M, Urszula K, Marek R (2009) Synthesis and X-ray structure of platinum(II), palladium(II) and copper(II) complexes with pyridine–pyrazole ligands: influence of ligands’ structure on cytotoxic activity. Polyhedron 28:637–645

    Article  Google Scholar 

  • Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1:777–791

    Article  CAS  PubMed  Google Scholar 

  • Francois L, Jean FR, Abdelazize L, Patrick M (2000) Telomerase: a therapeutic target for the third millennium. Crit Rev Oncol Hematol 34:111–126

    Article  Google Scholar 

  • Gillis AJ, Schuller AP, Skordalakes E (2008) Structure of the Tribolium castaneum telomerase catalytic subunit TERT. Nature 455:633–636 (luoyin 3)

    Article  CAS  PubMed  Google Scholar 

  • Hiroyuki K, Katsuyo S, Kenji F, Barrett JC, Oshimura M (2003) Human chromosome 5 carries a putative telomerase repressor gene. Genes Chromosomes Cancer 36:37–47

    Article  Google Scholar 

  • Kane JL, Hirth BH, Laing O, Gourlie BB, Nahill S, Barsomiam G (2003) Ureas of 5-aminopyrazole and 2-aminothiazole inhibit growth of gram-positive bacteria. Bioorg Med Chem Lett 13:4463–4466

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Aggarwal R, Tyagi P, Singh SP (2005) Synthesis and antibacterial activity of some new 1-heteroaryl-5-amino-4-phenyl-3-trifluoromethylpyrazoles. Eur J Med Chem 40:922–927

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu JL, Yang XH, Lu X, Zhao TT, Gong HB, Zhu HL (2012) Synthesis, biological evaluation and molecular docking studies of 3-(1,3-diphenyl-1H-pyrazol-4-yl)-N-phenylacrylamide derivatives as inhibitors of HDAC activity. Bioorg Med Chem 20:4430–4436

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Ruan BF, Li J (2011) Synthesis and biological activity of chiral dihydropyrazole: potential lead for drug design. Mini Rev Med Chem 11:771–821

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Zhang S, Qiu KM, Liu ZJ, Yang YS, Fu J, Zhu HL (2012) Synthesis, biological evaluation, 3D-QSAR studies of novel aryl-2H-pyrazole derivatives as telomerase inhibitors. Bioorg Med Chem Lett 23:1091–1095

    Article  PubMed  Google Scholar 

  • Masutomi K, Harn WC (2003) Telomerase and tumorigenesis. Cancer Lett 194:163–172

    Article  CAS  PubMed  Google Scholar 

  • Moorthy NSHN, Nuno SC, Maria JR, Pedro AF (2012) QSAR analysis of 2-benzoxazolyl hydrazone derivatives for anticancer activity and its possible target prediction. Med Chem Res 21:133–144

    Article  CAS  Google Scholar 

  • Olaussen KA, Dubrana K, Dornont J (2006) Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol 57:191–214

    Article  PubMed  Google Scholar 

  • Pascolo E, Wenz C, Lingner J, Hauel N, Priepke H, Kauffmann I (2002) Mechanism of human telomerase inhibition by BIBR1532, a synthetic, non-nucleosidic drug candidate. J Biol Chem 277:15566–15572

    Article  CAS  PubMed  Google Scholar 

  • Philippi C, Loretz B, Schaefer UF, Lehr CM (2010) Telomerase as emerging target to fight cancer—opportunities and challenges for nanomedicine. J Control Release 146:228–240

    Article  CAS  PubMed  Google Scholar 

  • Ruden M, Puri N (2012) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 06:007

    Google Scholar 

  • Samia MR, Manal NSS, Amal MY, Madiha AH (2009) Synthesis and biological evaluation of the pyrazole class of cyclooxy-genase-2-inhibitors. Lett Org Chem 6:282–288

    Article  Google Scholar 

  • Saretzki G (2003) Telomerase inhibition as cancer therapy. Cancer Lett 194:209–219

    Article  CAS  PubMed  Google Scholar 

  • Subhabrata C, Timothy RW, Brian SJB (2006) Hsp90 as a target for drug development. ChemMedChem 1:1331–1340

    Article  Google Scholar 

  • Sun D, Thompson B, Cathers BE (1997) Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem 40:2113–2116

    Article  CAS  PubMed  Google Scholar 

  • Tian FF, Jiang FL, Han XL, Xiang C, Ge YS, Li JH, Zhang Y, Li R, Ding XL, Liu YJ (2010) Synthesis of a novel hydrazone derivative and biophysical studies of its interactions with bovine serum albumin by spectroscopic, electrochemical, and molecular docking methods. Phys Chem B 114:14842–14853

    Article  CAS  Google Scholar 

  • Wright WE, Shay JW (2001) Cellular senescence as a tumor-protection mechanism: the essential role of counting. Curr Opin Genet Dev 11:98–103

    Article  CAS  PubMed  Google Scholar 

  • Zhang XM, Qiu M, Sun J, Zhang YB, Yang YS, Wang XL, Tang JF, Zhu HL (2011) Synthesis, biological evaluation, and molecular docking studies of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan moiety as potential anticancer agents. Bioorg Med Chem 19:6518–6524

    Article  CAS  PubMed  Google Scholar 

  • Zhao TT, Lu X, Yang XH, Wang LM, Li X, Wang ZC, Gong HB, Zhu HL (2012) Synthesis, biological evaluation, and molecular docking studies of 2,6-dinitro-4-(trifluoromethyl)phenoxysalicylaldoxime derivatives as novel antitubulin agents. Bioorg Med Chem 20:3233–3241

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financed by National Natural Science Foundation of China (No. J1103512).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Liang Zhu.

Additional information

Man Xing and Ting-Ting Zhao equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, M., Zhao, TT., Ren, YJ. et al. Synthesis, biological evaluation, and molecular docking studies of pyrazolyl-acylhydrazone derivatives as novel anticancer agents. Med Chem Res 23, 3274–3286 (2014). https://doi.org/10.1007/s00044-014-0909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-0909-0

Keywords

Navigation