Skip to main content
Log in

How Nutlin-3 disrupts the MDM2–p53 interaction: a theoretical investigation

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The tumor suppressor protein p53 is inhibited while mouse double minute 2 (MDM2) protein binds on its transactivation domain. Overexpression of MDM2 impairs p53 function and are observed in many human tumors. Disruption of MDM2–p53 interaction leads to increased p53 level and restores p53 transcriptional activity. Restoration of p53 activity through inhibiting the interaction between p53 and MDM2 represents a promising approach for cancer therapy. A number of small-molecule p53–MDM2 binding inhibitors have been developed during the past several years. Nutlin-3 has shown a potent and selective small-molecule MDM2 antagonist which has a considerable promise in pre-clinical studies. In this study we investigated theoretically the interaction of Nutlin-3 with MDM2 at atomistic level, and compared to the interaction of p53 with MDM2 to explore the molecular basis of inhibition. In MDM2–p53 model, there are three hydrogen bonding interactions between MDM2 and p53. The lengths of the hydrogen bonds are found to be 2.45, 2.46, and 1.89 Å whereas interaction energies are −3.82, −3.76, and −5.32 kcal/mol, respectively. The sum of three hydrogen bonding energy is −12.90 kcal/mol. On the other hand, in MDM2–Nutlin-3 model there are four hydrogen bond interactions between MDM2 and Nutlin-3. The bond lengths are found to be 2.29, 1.77, 2.48, and 2.39 Å whereas interaction energies are −4.21, −6.63, −3.65, and −3.63 kcal/mol, respectively. The sum of three hydrogen bonding energy is −18.12 kcal/mol. From the comparison between two models, it is revealed that MDM2–Nutlin3 model has four hydrogen bonds whereas MDM2–p53 model has three hydrogen bonds. The interaction energy in MDM2–Nutlin-3 is relatively more stable than MDM2–p53 interaction. Due to stronger hydrogen bond interaction with higher interaction energy, Nutlin-3 blocks the p53-binding pocket of MDM2 and thus disrupts the MDM2–p53 interaction and helps to activate p53 pathway of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Plate 1
Plate 2
Sketch 2

Similar content being viewed by others

References

  • Balint E, Bates S, Vousden KH (1999) Mdm2 binds p73 alpha without targeting degradation. Oncogene 18:3923–3929

    Article  CAS  PubMed  Google Scholar 

  • Calzaferri G, Forss L, Kamber I (1989) Molecular geometries by the extended huckel molecular orbital method. J Phys Chem 93:5366–5371

    Article  CAS  Google Scholar 

  • Case DA, Darden TA, Cheatham TEI, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong FK, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollmana PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  • Chene P (2003) Inhibiting the p53-MDM2 interaction: an important target for cancer therapy. Nature Rev Cancer 3:102–109

    Google Scholar 

  • Coll Mulet L, Iglesias Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E (2006) MDM2 antagonists activate p53 and synergies with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107:4109–4114

    Article  CAS  PubMed  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle Mesh Ewald-an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  • Del Carpio MCA, Yoshimori A (1999) A novel system for assessment of macromolecular interaction in condensed phases. (2) interaction site inference by molecular shape, electrostatic complementarity. Genome Inf 11:3–12

    Google Scholar 

  • Del Carpio MCA, Yoshimori A (2000) MIAX: a novel system for assessment of macromolecular interaction. (3) parallel hybrid GA for flexible protein docking. Genome Inf 12:205–214

    Google Scholar 

  • Del Carpio MCA, Ichiishi E, Yoshimori A, Oshikawa T (2002) MIAX: a new paradigm to model bio-molecular interaction and complex formation in condensed phases. PROTEINS: Struct Funct Genet 48:696–732

    Google Scholar 

  • Del Carpio MCA, Peissker T, Yoshimori A, Ichiishi E (2003) Docking unbound proteins with MIAX: a novel algorithm for protein-protein soft docking. Genome Inf 14:238–249

    Google Scholar 

  • Elanany M, Sasata K, Yokosuka T, Takami S, Kubo M, Miyamoto A, Iimamura A (2000) Computational methods for the design of zeolitic materials. Stud Surf Sci Catal 142:1867–1876

    Article  Google Scholar 

  • Elanany M, Selvam P, Yokosuka T, Takami S, Kubo M, Imamura A, Miyamoto A (2003) A quantum molecular dynamics simulation study of the initial hydrolysis step in Sol-Gel prosess. J Phys Chem B 107:1518–1524

    Article  CAS  Google Scholar 

  • Freedman D, Levine AJ (1999) Functions of the MDM2 oncoprotein. Cell Mol Life Sci 5:96–107

    Article  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Jung C, Ito Y, Endou A, Kubo M, Imamura A, Selvam P, Miyamoto A (2003) A Quantum-chemical study on the supported precious metal catalyst. Catal Today 87:43–50

    Article  CAS  Google Scholar 

  • Kadakia M, Slader C, Berberich SJ (2001) Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 20:321–330

    Article  CAS  PubMed  Google Scholar 

  • Katchalski Katzir E, Shariv I, Einstein M, Friesen AA, Aalo C, Wodak SJ (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 89:2195–2199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kubo M, Ando M, Sakahara S, Jung C, Seki K, Kusagaya T, Endou A, Takami S, Imamura A, Miyamoto A (2004) Development of tight-binding, chemical-reaction dynamics simulator for combinatorial computational chemistry. Appl Surf Sci 223:188–195

    Article  CAS  Google Scholar 

  • Kussie PH et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953

    Article  CAS  PubMed  Google Scholar 

  • Lane D (1999) Br J Cancer 80:1342–1349

    Article  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C (2006) Inactivation of the p53 pathway in retinoblastoma. Nature 444:61–66

    Article  CAS  PubMed  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–331

    Article  CAS  PubMed  Google Scholar 

  • Luo Y, Selvam P, Ito S, Takami Y, Kubo M, Imamura A, Miyamoto A (2003) Ring opening of methylenecyclopropane over lanthanocene catalyst: a quantum-chemical molecular dynamics simulation study. Organometallics 22:2181–2183

    Article  CAS  Google Scholar 

  • Lwin TZ, Luo R (2006) Force field influences in beta-hairpin folding simulations. Protein Sci 15:2642–2655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Michael D, Oren M (2003) The p53-Mdm2 module and the ubiquitin system. Semin Cancer Biol 13:49–58

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3453–3459

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Price SL (2000) Towards more accurate model intermolecular potentials for organic molecules. Rev Comput Chem 14:225–289

    Article  CAS  Google Scholar 

  • Rauf SMA, Ismael M, Sahu KK, Suzuki A, Koyama M, Tsuboi H, Hatakeyama N, Endou A, Takaba H, Del Carpio MCA, Kubo M, Miyamoto A (2010) The effect of R249S carcinogenic and H168R–R249S suppressor mutations on p53–DNA interaction, a multi scale computational study. Comput Biol Med 40:498–508

    Article  PubMed  Google Scholar 

  • Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  • Sasata K, Yokosuka T, Kurokawa H, Takami S, Kubo M, Imamura A, Shinmura T, Kanoh M, Selvam P, Miyamoto A (2003) Quantum chemical molecular dynamics simulation of the plasma etching processes. Jpn J Appl Phys 42:1859–1864

    Article  CAS  Google Scholar 

  • Stone AJ (1996) The Theory of Intermolecular Forces (Edi.). Clarendon Press, Oxford

    Google Scholar 

  • Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E (2006) Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66:9646–9655

    Article  PubMed  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Norman K, Ursula K, Christine L, Christian K, Nader F, Emily AL (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  • Wang JM, Cieplak P, Kollman PA (2000) How well does a restrained electrostatic potential (RESP) model perform in calcluating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al (1999) MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19:3257–3266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Md. Abdur Rauf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdur Rauf, S.M., Takaba, H., Del Carpio, C.A. et al. How Nutlin-3 disrupts the MDM2–p53 interaction: a theoretical investigation. Med Chem Res 23, 1998–2006 (2014). https://doi.org/10.1007/s00044-013-0792-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0792-0

Keywords

Navigation