Skip to main content

Advertisement

Log in

Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel series of thiazolo[2,3-b]quinazoline (16–19, 25–28, and 34–37) and cyclohepta[d]thiazolo[3,2-a]pyrimidine (20–23, 29–32, and 38–41) analogs was designed and synthesized. Structure elucidation of the synthesized compounds was attained by the use of H1 NMR, C13 NMR, and mass spectrometry. The obtained compounds were evaluated for their in vitro antitumor activity using the National Cancer Institute’s 60 cell lines’ panel assay that included nine tumor subpanels, namely, leukemia, non-small cell lung, colon, CNS, melanoma, ovarian, renal, prostate, and breast cancer cells. Most of the investigated compounds showed a remarkable broad-spectrum antitumor activity. Compounds 19, 28, 32, and 34 proved to be 10-, 15-, 2-, and 7-fold more active than 5-FU, with GI50 MG-MID values of 2.4, 1.5, 11.2, and 3.1 μM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdel-Hafez AA, El-Sherief HA, Jo M, Kurokawa M, Shiraki K, Kawahata T, Otake T, Nakamura N, Hattori M (2002) Synthesis and evaluation of anti HIV-1 and anti HSV-1 activities of 4-H-[1,2,4]triazolo[1,5-a]pyrimidin-5-one derivatives. Arzneimit Forschung 52:833–839

    CAS  Google Scholar 

  • Al-Omary FA, Hassan GS, El-Messery SM, El-Subbagh HI (2012) Substituted Thiazoles V. Synthesis and antitumor activity of novel Thiazolo[2,3-b] quinazoline and Pyrido[4,3-d]thiazolo[3,2-a]pyrimidine analogs. Eur J Med Chem 47:65–72

    Article  CAS  PubMed  Google Scholar 

  • Bell FW, Cantrell AS, Hogberg M, Jaskunas SR, Johansson NG, Jordan CL, Kinnick MD, Lind P, Morin JM, Noreen R, Oberg B, Palkowitz JA, Parrish CA, Pranc P, Sahlberg C, Ternansky RJ, Vasileff RT, Vrang L, West SJ, Zhang H, Zhou XX (1995) Phenethylthiazolethiourea (PETT) compounds, a new class of HIV-1 reverse transcriptase inhibitors. 1. Synthesis and basic structure-activity relationship studies of PETT analogs. J Med Chem 38:4929–4936

    Article  CAS  PubMed  Google Scholar 

  • Bharti SK, Nath G, Tilak R, Singh SK (2010) Synthesis, anti-bacterial and anti-fungal activities of some novel Schiff bases containing 2,4-disubstituted thiazole ring. Eur J Med Chem 45:651–660

    Article  CAS  PubMed  Google Scholar 

  • Boyd MR, Paull KD (1995) Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  CAS  Google Scholar 

  • Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S, Hochhaus A, Guilhot F, Saglio G, Apperley J, Ottmann O, Shah N, Erben P, Branford S, Agarwal P, Gollerkeri A, Baccarani M (2007) Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood 109:3207–3213

    Article  CAS  PubMed  Google Scholar 

  • El-Bendary ER, El-Sherbeny MA, Badria FA (1998) Synthesis and biological evaluation of certain new thiazolopyrimidines. Boll Chim Farm 137:115–119

    CAS  PubMed  Google Scholar 

  • El-Messery SM, Hassan GS, Al-Omary FA, El-Subbagh HI (2012) Substituted thiazoles VI. Synthesis and antitumor activity of new 2-acetamido- and 2 or 3-propanamido-thiazole analogs. Eur J Med Chem 54:615–625

    Article  CAS  PubMed  Google Scholar 

  • El-Subbagh HI, Al-Obaid AM (1996) 2,4-Disubstituted thiazoles, II. A novel class of antitumor agents, synthesis and biological evaluation. Eur J Med Chem 31:1017–1021

    Article  CAS  Google Scholar 

  • El-Subbagh HI, El-Naggar WA, Badria FA (1994) Synthesis and biological testing of 2,4-disubstituted thiazole derivatives as potential antitumor antibiotics. Med Chem Res 3:503–516

    CAS  Google Scholar 

  • El-Subbagh HI, Abadi AH, Lehmann J (1999) 2,4-Disustituted thiazoles, III. Synthesis and antitumor activity of ethyl 2-substituted-aminothiazole-4-carboxylate analogs. Arch Pharm Pharm Med Chem 332:137–142

    Article  CAS  Google Scholar 

  • El-Subbagh HI, Al-Khawad IE, El-Bendary ER, Al-Obaid AM (2001) Substituted thiazoles IV. Synthesis and antitumor activity of new substituted imidazo[2,1-b]thiazole analogs. Saudi Pharm J 9:14–20

    CAS  Google Scholar 

  • Ergenc N, Capan G (1994) Synthesis and anticonvulsant activity of new 4-thiazolidone and 4-thiazoline derivatives. II Farmaco 49:449–451

    CAS  Google Scholar 

  • Gillespie RJ, Cliffe IA, Dawson CE, Dourish CT, Gaur S, Giles PR, Jordan AM, Knight AR, Lawrence A, Lerpiniere J, Misra A, Pratt RM, Todd RS, Upton R, Weiss SM, Williamson DS (2008) Antagonists of the human adenosine A2A receptor. Part 2: design and synthesis of 4-arylthieno[3,2-d]pyrimidine derivatives. Bioorg Med Chem Lett 18:2920–2923

    Article  CAS  PubMed  Google Scholar 

  • Go ML, Wu X, Liu XL (2005) Chalcones: an update on cytotoxic and chemoprotective properties. Curr Med Chem 12:483–499

    Article  CAS  Google Scholar 

  • Gouda MA, Berghot MA, El-Ghani GEA, Khalil AM (2010) Synthesis and antimicrobial activities of some new thiazole and pyrazole derivatives based on 4,5,6,7-tetrahydrobenzothiophene moiety. Eur J Med Chem 45:1338–1345

    Article  CAS  PubMed  Google Scholar 

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19:622–638

    CAS  PubMed  Google Scholar 

  • Habib NS, Soliman R, Ismail K, Hassan AM, Sarg MT (2003) Pyrimidines part II: synthesis of novel pyrimidines. 1,2,4-triazolo-[4,3-a]pyrimidin-7-ones and pyrimidino[2,1-c][1,2,4] triazi-8-ones for their antimicrobial and anticancer activities. Boll Chim Farm 142:396–405

    CAS  PubMed  Google Scholar 

  • Harris CC, Hollstein M (1993) Clinical implications of the P53 tumor suppressor gene. N Engl J Med 329:1318–1327

    Article  CAS  PubMed  Google Scholar 

  • Ko HH, Tsao LT, Yu KL, Liu CT, Wang JP, Lin CN (2003) Structure–activity relationship studies on chalcone derivatives: the potent inhibition of chemical mediators release. Bioorg Med Chem 11:105–111

    Article  CAS  PubMed  Google Scholar 

  • Lin YM, Zhou Y, Flavin MT, Zhou LM, Nie W, Chen FC (2002) Chalcones and flavonoids as anti-tuberculosis agents. Bioorg Med Chem 10:2795–2802

    Article  CAS  PubMed  Google Scholar 

  • Lopez SN, Castelli MV, Zacchino SA, Dominguez JN, Lobo G, Jaime CC, Cortes JCG, Ribas JC, Devia C, Ana MR, Ricardo DE (2001) In vitro antifungal evaluation and structure–activity relationships of a new series of chalcone derivatives and synthetic analogs, with inhibitory properties against polymers of the fungal cell wall. Bioorg Med Chem 9:1999–2013

    Article  CAS  PubMed  Google Scholar 

  • Monks A, Scudiero D, Skehan P (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  CAS  PubMed  Google Scholar 

  • Nielsen SF, Christensen SB, Cruciani G, Kharazmi A, Liljefors T (1998) Antileishmaniai chalcones: statistical design, synthesis, and three-dimensional quantitative structure-activity relationship analysis. J Med Chem 41:4819–4832

    Article  CAS  PubMed  Google Scholar 

  • Pees KJ, Albert G (1992) Triazolopyrimidine derivatives with fungicidal activity. European patent EP 0550113 A2

  • Popsavin M, Spaić S, Svircev M, Kojić V, Bogdanović G, Popsavin V (2007) Synthesis and antitumour activity of new tiazofurin analogs bearing a 2,3-anhydro functionality in the furanose ring. Bioorg Med Chem Lett 17:4123–4127

    Article  CAS  PubMed  Google Scholar 

  • Rao YK, Fang S-H, Tzeng Y-M (2009) Synthesis and biological evaluation of 3α,4α,5α-trimethoxychalcone analogs as inhibitors of nitric oxide production and tumor cell proliferation. Bioorg Med Chem 17:7909–7914

    Article  PubMed  Google Scholar 

  • Rostom SAF, Hassan GS, Subbagh HI (2009) Synthesis and biological evaluation of some polymethoxylated fused pyridine ring systems as antitumor agents. Arch Pharm Chem Life Sci 342:584–590

    Article  CAS  Google Scholar 

  • Said M, Abouzid K, Mouneer A, Ahmedy A, Osman AM (2004) Synthesis and biological evaluation of new thiazolopyrimidines. Arch Pharm Res 27:471–477

    Article  CAS  PubMed  Google Scholar 

  • Sashidhara VK, Kumar A, Kumar M, Sarkar J, Sinha S (2010) Synthesis and in vitro evaluation of novel coumarin–chalcone hybrids as potential anticancer agents. Bioorg Med Chem Lett 20:7205–7211

    Article  CAS  PubMed  Google Scholar 

  • Shi H-B, Zhang S-J, Ge Q-F, Guo D-W, Cai C-M, Hua W-X (2010) Synthesis and anticancer evaluation of thiazolyl–chalcones. Bioorg Med Chem Lett 20:6555–6559

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Pandey J, Yadav A, Chaturvedi V, Bhatnagar S, Gaikwad AN, Sinha SK, Kumar A, Shukla PK, Tripathi RP (2009) A facile synthesis of α, α’-(EE)-bis(benzylidene)-cycloalkanones and their antitubercular evaluations. Eur J Med Chem 44:1705–1709

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Pandey SK, Anand N, Dwivedi R, Singh S, Sinha SK, Chaturvedi V, Jaiswal N, Srivastava AK, Shah P, Siddiqui MI, Tripathi RP (2011) Synthesis, molecular modeling and bio-evaluation of cycloalkyl fused 2-aminopyrimidines as antitubercular and antidiabetic agents. Bioorg Med Chem Lett 21:4404–4408

    Article  CAS  PubMed  Google Scholar 

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JR, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxic assay for anticancer drug screening. J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Varmus H (2006) The new era in cancer research. Science 312:1162–1165

    Article  CAS  PubMed  Google Scholar 

  • Wolter FE, Molinari L, Socher ER, Schneider K, Nicholson G, Beil W, Seitz O, Süssmuth RD (2009) Synthesis and evaluation of a netropsin-proximicin-hybrid library for DNA binding and cytotoxicity. Bioorg Med Chem Lett 19:3811–3815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to the NCI, Bethesda, MD, USA, for performing the antitumor testing of the synthesized compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada S. Hassan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hassan, G.S. Synthesis and antitumor activity of certain new thiazolo[2,3-b]quinazoline and thiazolo[3,2-a]pyrimidine analogs. Med Chem Res 23, 388–401 (2014). https://doi.org/10.1007/s00044-013-0649-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0649-6

Keywords

Navigation