Skip to main content
Log in

Synthesis and antibacterial activity of 4,4′-(aryl or alkyl methylene)-bis(1H-pyrazol-5-ol) derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A rapid, improved, and environmentally benign synthesis of 4,4′-aryl or alkyl methylene-bis(1H-pyrazol-5-ols) has been accomplished by tandem Knoevenagel–Michael reaction of 1-aryl-3-alkyl-1H-pyrazol-5-ol with various aldehydes catalyzed by ammonium acetate. All the synthesized compounds 3a–v were evaluated in vitro for their antibacterial activity against Pseudomonas aeruginosa, Xanthomonas protophormiae, Bacillus licheniformis, and Staphylococcus aureus. Among the tested compounds, compounds with trifluromethyl group show excellent antibacterial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme1
Scheme 2

Similar content being viewed by others

References

  • Abid M, Torok B (2005) Synthesis of N-heteroaryl(trifluoromethyl)hydroxyalkanoic acid esters by highly efficient solid acid-catalyzed hydroxyalkylation of indoles and pyrroles wih activated trifluoromethyl ketones. Adv Synth Catal 347:1797–1803

    Article  CAS  Google Scholar 

  • Balbi A, Anzaldi M, Macciò C, Aiello C, Mazzei M, Gangemi R, Castagnola P, Miele M, Rosano C, Viale M (2011) Synthesis and biological evaluation of novel pyrazole derivatives with anticancer activity. Eur J Med Chem 46:5293–5309

    Article  CAS  PubMed  Google Scholar 

  • Buzykin BI, Lonshchakova TI (1971) Bull Acad Sci USSR, Div Chem Sci (Engl Trans) 2224-2226

  • EI-Sayed MA-A, Abdel-Aziz NI, Abdel-Aziz AA-M, EI-Azab AS, ELTahir KEH (2012) Synthesis, biological evaluation and molecular modelling study of pyrazole and pyrazoline derivatives as selective COX-2 inhibitors and anti-inflammatory agents. Bioorg Med Chem 20(10):3306–3316

    Article  Google Scholar 

  • Elinson MN, Dorofeev AS, Nasybullin RF, Nikishin GI (2008) Facile and convenient synthesis of 4′4′-(arylmethylene)bis(1H-pyrazol-5-ols) by electrocatalytic tandem Knoevenagel–Michael reaction. Synthesis 12:1933–1937

    Article  Google Scholar 

  • Filler R, Saha R (2009) Fluorine in medicinal chemistry: a century of progress and a 60-year retrospective of selected highlights. Future Med Chem 1:777–791

    Article  CAS  PubMed  Google Scholar 

  • Gent DH, Schwartz HF (2005) Management of Xanthomonas leaf blight of onion with a plant activator, biological control agents, and copper bactericides. Plant Dis 89:631–639

    Article  CAS  Google Scholar 

  • Grundmann H, Aires-de-Sousa, Boyce J, Tiemersma E (2006) Emergence and resurgence of methicillinresistant Staphylococcus aureus as a public-health threat. Lancet 368:874

    Article  PubMed  Google Scholar 

  • Hamama WS (2001) Pyrazolones as versatile precursors for the synthesis of fused and binary heterocycles. Synth Commun 31:1335–1345

    Article  CAS  Google Scholar 

  • Jagrat M, Behera J, Yabanoglu S, Ercan A, Ucar G, Sinha BN, Sankaran V, Basu A, Jayaprakash V (2011) Pyrazoline based MAO inhibitors: synthesis, biological evaluation and SAR studies. Bioorg Med Chem Lett 21:4296–4300

    Article  CAS  PubMed  Google Scholar 

  • Jin TS, Wang AQ, Cheng ZL, Zhang JS, Li TS (2005) A clean and simple synthesis of 6-amino-4-aryl-5-cyano-3-methyl-1-phenyl-1,4-dihydropyrano[2,3-c] pyrazole in Water. Synth Commun 35:137–140

    Article  CAS  Google Scholar 

  • Kiran RP, Vikas SP, Vinod DG, Vikas SP, Prashant GU, Sekar N (2012) Phosphomolybdic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,4′- (arylmethylene)bis(1H-pyrazol-5-ols). Synth Commun 42:1349–1358

    Article  Google Scholar 

  • Lee JH (2005) Synthesis of hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett 46:7329–7330

    Article  CAS  Google Scholar 

  • Li X-L, Wang Y-M, Tian B, Matsuura T, Meng J-B (1998) The solid-state Michael addition of 3-methyl-1-phenyl-5-pyrazolone. J Heterocycl Chem 35:129–134

    Article  CAS  Google Scholar 

  • Lin W-H, Hsieh S-Y, Yen S-C, Chen C-T, Yeh T-K, Hsu T, Lu C-T, Chen C-P, Chen C-W, Chou L-H, Huang Y-L, Cheng A-H, Chang Y-I, Tseng Y-J, Yen K-R, Chao Y-S, Hsu JT-A, Jiaang W-T (2011) Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3). Bioorg Med Chem 19(14):4173–4182

    Article  CAS  PubMed  Google Scholar 

  • Lingaiah N, Jhansi M, Hanmant KG, Rajashaker B, Rani MS, Subhashini NJP (2011) Synthesis and anti-inflammatory activity of some novel 3-phenyl-N-[3-(4-phenylpiperazin-1yl)propyl]-1H-pyrazole-5-carboxamide derivative. Bioorg Med Chem Lett 21:4138–4140

    Article  Google Scholar 

  • Mabry M, Ganem B (2006) Studies on the biginelli reaction: a mild and selective route to 3,4-dihydropyrimidin-2(1H)-ones via enamine intermediates. Tetrahedron Lett 47:55–56

    Article  CAS  Google Scholar 

  • Mei Liu, Zhuli Xin, Clampit Jill E, Sanyi Wang, Gum Rebecca J, Haasch Deanna L, James Trevillyan, Cele Abad-Zapatero, Fry Elizabeth H, Sham Hing L, Gang Liu (2006) Synthesis and SAR of 1,9-dihydro-9-hydroxy pyrazolo[3,4-b]quinolin-4- ones as novel selective c-Jun N-terminal kinase inhibitors. Bioorg Med Chem Lett 16:2590–2594

    Article  Google Scholar 

  • Mitra AS, Rout MK (1961) Tautomeric products of condensation of aldehydes with pyrazolone. J Indian Chem Soc 38:893–895

    Google Scholar 

  • Mitsumori S, Zhang HL, Cheong PH, Houk KN, Tanaka F, Barbas CF (2006) Direct asymmetric anti-mannich-type reactions catalyzed by a designed amino acid. J Am Chem Soc 128:1040–1041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Niknam K, Saberi D, Sadegheyan M, Deris A (2010) Silica-bonded S-sulfonic acid: an efficient and recyclable catalyst for the synthesis of 4.4′-(arylmethylene)bis(1H-pyrazol-5-ols). Tetrahedron Lett 51:692–694

    Article  CAS  Google Scholar 

  • Patel MA, Bhila VG, Patel NH, Patel AK (2012) Brahmbhatt DI (2012) Synthesis, characterization and biological evaluation of some pyridine and quinoline fused chromenone derivatives. Med Chem Res 21:4381–4388

    Article  CAS  Google Scholar 

  • Pavlov PT, Goleneva AF, Lesnov AE, Prokhorova TS (1998) Biological activity of some pyrazolone derivatives. Pharm Chem J (Engl Trans) 32:370–372

    Article  Google Scholar 

  • Pursor S, Moore PR, Swallow S, Gouverneur V (2008) Fluorine in medicinal chemistry. Chem Soc Rev 37:320–330

    Article  Google Scholar 

  • Rahimizadeh Md, Pordel M, Bakavoli M, Rezaeian S, Sadeghian A (2010) Synthesis and antibacterial activity of some new derivatives of pyrazole. World J Microbiol Biotechnol 26:317–321

    Article  CAS  Google Scholar 

  • Saeed A, Shaheen U, Hameed A, Haider Naqvi SZ (2009) Synthesis, characterization and antimicrobial activity of some new 1-(fluorobenzoyl)-3-(fluorophenyl) thioureas. J Fluor Chem 130:1028–1034

    Article  CAS  Google Scholar 

  • Sakamoto R, Ryoto M, Kume S, Sampei H, Sugimoto M, Nishihara H (2005) Photo-controllable tristability of a dithiolato-bipyridine-Pt(II) complex molecule containing two azobenzene moieties. Chem Commun 9:1215–1217

    Article  Google Scholar 

  • Secci D, Bolasco A, Chimenti P, Carradori S (2011) The state of the art of pyrazole derivatives as monoamine oxidase inhibitors and antidepressant/anticonvulsant agents. Curr Med Chem 18:5114–5144

    Article  CAS  PubMed  Google Scholar 

  • Shamroukh AH, Zaki MEA, Morsy EMH, Abdel-Motti FM, Abdel Megeid FME (2007) Synthesis, isomerization, and antimicrobial evaluation of some pyrazolopyrano triazolo pyrimidine derivatives. Arch de Pharma 340:345–351

    Article  CAS  Google Scholar 

  • Singh D, Singh D (1984) Synthesis of 1,3-disubstituted 4-arylidenepyrazoln-5-ones and the keto and enol forms of 4,4′-arylidenebis(1,3-disubstituted pyrazolin-5-ones). J Chem Eng Data 29:355–356

    Article  CAS  Google Scholar 

  • Smart BE (2001) Fluorine substituent effects (on bioactivity). J Fluor Chem 109:3–11

    Article  CAS  Google Scholar 

  • Sobhani S, Hasaninejad A-R, Maleki MF, Parizi ZP (2012) Tandem Knoevenagel–Michael reaction of 1-phenyl-3methyl-5-pyrazolone with aldehydes using 3-aminopropylated silica gel as an efficient and reusable heterogeneous catalyst. Synth Commun 42:2245–2255

    Article  CAS  Google Scholar 

  • Sujatha K, Shanthi G, Selvam NP, Manoharan S, Perumal PT, Rajendran M (2009) Synthesis and antiviral activity of 4,4′-(arylmethylene)bis(1H-pyrazol-5-ols) against peste des petits ruminant virus (PPRV). Bioorg Med Chem Lett 19:4501–4503

    Article  CAS  PubMed  Google Scholar 

  • Tong-Shou J, Ai-Qing W, Xin W, Jian-She Z, Tong-Shuang L (2004) A clean one-pot Synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media. Synlet 5:871–873

    Google Scholar 

  • Trautmann M, Halder S, Hoegel J, Royer H, Haller M (2008) Point-of-use filtration reduces endemic Pseudomonas aeruginosa infections on a surgical intensive care unit. Am J Infect Control 36:421–429

    Article  PubMed  Google Scholar 

  • Turnbull PCB, Kramer JM, Murray PR, Baron MA, Tenover FC, Yolken RH, Murray PR (1995) Bacillus. Manual of clinical microbiology, 6th edn. American Society for Microbiology, Washington, pp 349–356

    Google Scholar 

  • Wang SX, Li JT, Yang WZ, Yin YH, Xie ZH (2004) Solvent-free synthesis of ethyl a-cyanocinnamates catalyzed by K2O-Al2O3 using grinding method. Synth Commun 34:829–834

    Article  Google Scholar 

  • Wang W, Wang SX, Qin XY, Li JT (2005) Reaction of aldehyde and pyrazolones in the presence of sodium dodecyl sulphate in aqueous media. Synth Commun 35:1263–1269

    Article  CAS  Google Scholar 

  • Yadav JS, Kumar SP, Kondaji G, Rao RS, Nagaiah K (2004) A novel l-Proline catalyzed biginelli reaction: one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones under solvent-free conditions. Chem Lett 33:1168–1169

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are very much thankful to the Director, IICT for his constant encouragement and support and also thankful to UGC for financial assistant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vatsala Rani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavanarushi, S., Kanakaiah, V., Bharath, G. et al. Synthesis and antibacterial activity of 4,4′-(aryl or alkyl methylene)-bis(1H-pyrazol-5-ol) derivatives. Med Chem Res 23, 158–167 (2014). https://doi.org/10.1007/s00044-013-0623-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0623-3

Keywords

Navigation