Skip to main content
Log in

Protective effect of Centaurea pallescens Del. against CCl4-induced injury on a human hepatoma cell line (Huh7)

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Through a hepatoprotective bioassay-guided fractionation of the methanol extract from Centaurea pallescens Del. (Asteraceae), a new acylated flavonoid triglycoside, 4′-methoxy kaempferol 3-O-[α-l-rhamnopyranosyl-(1→3)-(2-O-E-p-coumaroyl)] β-d-glucopyranoside-7-O-(4-O-E-p-coumaroyl) α-l-rhamnopyranoside (1) was isolated from the highly active aqueous fraction. In addition, six known compounds were isolated from both aqueous (23) and ethyl acetate soluble fractions (47). The structure of (1) was determined by comprehensive analysis of 1D and 2D NMR and mass spectral data. The protective effects of the methanol extract of C. pallescens and its fractions on the human hepatoma cell line were evaluated using Silymarin as a positive control. Hepatoprotection was assessed through determination of aspartate aminotransferase (AST), alanine transaminase (ALT), and superoxide dismutase (SOD) activities in addition to glutathione (GSH) levels before and after incubating the cells with carbon tetrachloride. Compound 1, the major constituent of the aqueous fraction, showed a significant cytoprotection at 100 μg/mL as evidenced by decreasing ALT activity to 18.6 ± 0.12, and enhancing SOD activity to 264.6 ± 4.3 U/mL. Meanwhile, compound 2 at 10 μg/mL decreased AST activity to 5.8 ± 2.4 U/mL. Moreover, Compounds 2 and 3 at 1,000 μg/mL significantly enhanced GSH levels. In conclusion, the protective effects of C. pallescens extract, its fractions and compounds 13 are concluded to be partly mediated by its antioxidant activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdallah HM, Ezzat SM, El Salah, Dine R, Abdel-Sattar E, Abdel-Naim AB (2013) Protective effect of Echinops galalensis against CCl4-induced injury on the human hepatoma cell line (Huh7). Phytochem Lett 6:73–78

    Article  CAS  Google Scholar 

  • Achliya GS, Wadodkar SG, Dorle AK (2004) Evaluation of hepatoprotective effect of Amalkadi Ghrita against carbon tetrachloride induced hepatic damage in rats. J Ethnopharmacol 90:229–232

    Article  PubMed  Google Scholar 

  • Al-easa HS, Mann J, Rizk A (1990) Guaianolides from Centaurea sinaica. Phytochemistry 29:1324–1325

    Article  CAS  Google Scholar 

  • Amer MMA, Salama OM, Omar AA (1984) Methylated flavonoidal aglycones from Centaurea alexandrina. Acta Pharm Jugosl 34:257

    CAS  Google Scholar 

  • Amresh G, Rao ChV, Singh PN (2007) Antioxidant activity of Cissampelos pareira on benzo (a) pyrene induced mucosal injury in mice. Nutr Res 27:625–632

    Article  CAS  Google Scholar 

  • Ashok Shenoy K, Somayaji SN, Bairy KL (2001) Hepatoprotective effects of Ginkgo biloba against carbon tetrachloride induced hepatic injury in rats. Indian J Pharmacol 33:260–266

    Google Scholar 

  • Bishayee A, Sarkar A, Chatterjee M (1995) The hepatoprotective activity of carrot (Daucus carota L) against carbon tetrachloride intoxication in mouse liver. J Ethnopharmacol 47:69–74

    Article  CAS  PubMed  Google Scholar 

  • Bohm BA, Stuessy TF (2001) Flavonoids of the sunflower family (Asteraceae). Springer, Wien

    Book  Google Scholar 

  • Castro JA, de Ferreyra GC, de Castro CR, Sesame H, de Fenos OM, Gillette JR (1974) Prevention of carbon tetrachloride induced necrosis by inhibitors of drug metabolism. Further studies on the metabolism of their action. Biochem Pharmacol 23:295–302

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee TK (2000) Medicinal plants with hepatoprotective properties in herbal opinions, vol vol III. Books and Allied (P) Ltd., Calcutta, p 135

    Google Scholar 

  • Chattopadhyay RR (2003) Possible mechanism of hepatoprotective activity of Azadirachta indica leaf extract Part II. J Ethnopharmacol 89:217–219

    Article  CAS  PubMed  Google Scholar 

  • Dianzani MU, Muzia G, Biocca ME, Canuto RA (1991) Lipid peroxidation in fatty liver induced by caffeine in rats. Int J Tissue React 13:79–85

    CAS  PubMed  Google Scholar 

  • Felice S, Apostolides AN, Maurizio B (2005) Volatile components of Centaurea eryngiodes Lam. and Centaurea iberica Trev. var. hermonis Bois. Lam., two Asteraceae growing wild in Lebanon. Nat Prod Res 19:749–754

    Article  Google Scholar 

  • Fernández MA, García MD, Sáenz MT (1996) Antibacterial activity of the phenolic acids fractions of Scrophularia frutescens and Scrophularia sambucifolia. J Ethnopharmacol 53:11–14

    Article  PubMed  Google Scholar 

  • Harraz FM, Masaouda EA (1988) 1H- and 13C-NMR assignments and cytotoxic activity of the lignan glucoside arctiin from centaurea Alexandrina Del. Alex J Pharm Sci 11:168–171

    Google Scholar 

  • Hegnauer R (1989) Chemotaxonomie der Pflanzen VIII. Birkhäuser-Verlag, Basel Boston Berlin

    Book  Google Scholar 

  • Helal HM, Nakamura N, Meselhy MR, El-Fishawy AM, Hattori M, Mahran GH (1998) Guaianolides from Centaurea scoparia. Phytochemistry 45:551–554

    Article  Google Scholar 

  • Ismail SI, Hammouda FM, Rimpler H, Abdallah SM (1986) Methylated flavonoidal aglycones from Centaurea alexandrina. Planta Med 52:527

    Article  Google Scholar 

  • Karawya MS, Hilal SH, Hifnawy MS, El-Hawary SS (1975) Phytochemical study of Centaurea calcitrapa L. growing in Egypt. Egypt J Pharm Sci 16:429–444

    CAS  Google Scholar 

  • Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New York

    Book  Google Scholar 

  • Markham KR, Chari VM (1982) Carbon-13 NMR spectroscopy of flavonoids. In: Harborne JB, Mabry TJ (eds) The flavonoids: advances in research. Chapman and Hall, London

    Google Scholar 

  • Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  CAS  PubMed  Google Scholar 

  • McRae JM, Yang Q, Crawford RJ, Palombo EA (2008) Acylated flavonoid tetraglycoside from Planchonia careya leaves. Phytochem Lett 1:99–102

    Article  CAS  Google Scholar 

  • Mohamed MA, Marzouk MSA, Moharram FA, El-Sayed MM, Baiuomy AR (2005) Phytochemical constituents and hepatoprotective activity of Viburnum tinus. Phytochemistry 66:2780–2786

    Article  CAS  PubMed  Google Scholar 

  • Mohamed MA, Ahmed WS, El-Said MM, Hayen H (2008) New acylated flavonol diglycosides of Cynanchum acutum leaves. Nat Prod Commun 2:193–198

    Google Scholar 

  • Muhammed SM (1989) A pharmacognostical study of certain Centaurea species (Centaurea alexandrina, C. pallescens and C. glomerata family; Compositae). M. Sc. Thesis, Alexandria University, Egypt

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Recknagel RO (1983) A new direction in the study of carbon tetrachloride hepatotoxicity. Life Sci 33:401–408

    Article  CAS  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    CAS  PubMed  Google Scholar 

  • Subramoniam A, Pushpangadan P (1999) Development of phytomedicine for liver diseases. Indian J Pharmacol 31:166–175

    Google Scholar 

  • Tackholm V (1974) Student’s flora of Egypt, 2nd edn. Cairo University, Cooperative Printing Company, Beirut, p 413

    Google Scholar 

  • Thabrew MI, Joice PDTM, Rajatissa WA (1987) Comparative study of efficacy of Paetta indica and Osbeckia octandra in the treatment of liver dysfunction. Planta Med 53:239–241

    Article  CAS  PubMed  Google Scholar 

  • Torres-Gonzalez L, Munoz-Espinosa LE, Rivas-Estilla AM, Trujillo-Murillo K, Salazar-Aranda R, Waksman De Torres N, Cordero-Perez P (2011) Protective effect of four Mexican plants against CCl4-induced damage on the Huh7 human hepatoma cell line. Ann Hepatol 10:73–79

    PubMed  Google Scholar 

  • Wendel A, Feurensteins S, Konz KH (1987) Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol 28:2051–2053

    Article  Google Scholar 

  • Youssef DTA (1998) Sesquiterpene lactones of Centaurea scoparia. Phytochemistry 49:1733–1737

    Article  CAS  PubMed  Google Scholar 

  • Youssef AE, Abdallah OA, Sarg TM, David SJ (1987) Chemical constituents of Centaurea pallescens. Planta Med 53:5

    Article  Google Scholar 

Download references

Acknowledgments

The authors are indebted and grateful to Prof. Dr. Olov Sterner and Dr. Karl-Erik Bergquist, faculty of science, Lund university, Sweden, for performing spectral data for all the isolated compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona A. Mohamed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 397 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdallah, H.M., Mohamed, M.A., Abdou, A.M. et al. Protective effect of Centaurea pallescens Del. against CCl4-induced injury on a human hepatoma cell line (Huh7). Med Chem Res 22, 5700–5706 (2013). https://doi.org/10.1007/s00044-013-0563-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0563-y

Keywords

Navigation