Skip to main content
Log in

Molecular dynamic simulations of Co(III) and Ru(II) polypyridyl complexes and docking studies with dsDNA

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The binding studies of Co(III) and Ru(II) polypyridyl complexes with dsDNA were carried out by molecular modeling studies to identify the binding interactions. The 3D structures of the metal complexes [Ru(phen)2ippip]2+ (RP-ippip), [Co(phen)2ippip]3+ (CP-ippip), [Ru(bpy)2ippip]2+ (RB-ippip), and [Co(bpy)2ippip]3+ (CB-ippip), where ippip = 4-(isopropylbenzaldehyde)imidazo[4,5-f][1,10] phenanthroline, phen = 1,10-phenanthroline, and bpy = bypyridine, were simulated using molecular dynamic simulations for stable conformers. The energy-minimized 3D structures of metal complexes were docked to the double-stranded dodecamer 5′-D(*AP * CP * CP * GP * AP * CP * GP * TP * CP * GP * GP * T)-3′. The aromatic ligand, ippip, facilitates the binding of the metal complex with DNA through intercalation. The effect of ancillary ligands, phen and bpy, was investigated. The ancillary ligands were found to be involved in bond formation with the phosphate backbone of nucleotide base pairs in metal complex–DNA docked complex. The significant interactions of metal complexes in the major groove of DNA are the prerequisite features of the metal complexes to be considered as DNA-intercalator. The molecular docking data are well substantiated by the available experimental data. The modeling results should extend knowledge about the nature of binding of these complexes with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashwini KK, Reddy KL, Sirasani S (2010) Study of the interaction between ruthenium(II) complexes and CT-DNA, synthesis, characterization, photocleavage and antimicrobial activity studies. Supramol Chem 22(10):629–643

    Article  Google Scholar 

  • Brüussel M, Di Dio PJ, Muńiz K, Kirchner B (2011) Comparison of free energy surfaces calculations from ab initio molecular dynamic simulations at the example of two transition metal catalyzed reactions. Int J Mol Sci 12:1389–1409

    Article  Google Scholar 

  • Ciancetta A, Samuel G, Ulf R (2011) A QM/MM study of the binding of RAPTA ligands to cathepsin B. J Comput Aided Mol Des 25(8):729–742

    Article  CAS  PubMed  Google Scholar 

  • Corral E, Hotze CGA, Den Dulk H et al (2009) Ruthenium polypyridyl complexes and their modes of interaction with DNA: is there a correlation between these interactions and the antitumor activity of the compounds. J Biol Inorg Chem 14(3):439–448

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cundari TR (1998) Molecular modeling of d- and f-block metal complexes. J Chem Soc Dalton Trans 0:2771–2776

    Article  CAS  Google Scholar 

  • Dervan PB, Poulin-Kerstien AT, Fechter EJ, Edelson BS (2005) Regulation of gene expression by synthetic DNA-binding ligands. In: Chaires JB, Waring MJ (eds) DNA binders and related subjects, topics in current chemistry. Springer, Berlin, pp 1–31

    Google Scholar 

  • Deshpande MS, Kumbhar AA, Kumbhar AS (2007) Hydrolytic cleavage of DNA by a Ru(II) polypyridyl complex. Inorg Chem 46:5450–5452

    Article  CAS  PubMed  Google Scholar 

  • Devi SC, Sirasani S (2012) Synthesis, characterization, and DNA-binding properties of Ru(II) molecular light switch complexes. J Coord Chem 65(3):474–486

    Article  CAS  Google Scholar 

  • Duhovny D, Nussinov R, Wolfson HJ (2002) Efficient unbound docking of rigid molecules. In: Gusfield et al. (eds) Proceedings of the 2nd workshop on algorithms in bioinformatics (WABI) Rome, Italy. Lecture notes in computer science 2452. Springer, Heidelberg, pp 185–200

  • Erkkila KE, Odom DT, Barton KJ (1999) Recognition and reaction of metallointercalators with DNA. Chem Rev 99(9):2777–2796

    Article  CAS  PubMed  Google Scholar 

  • Gaur R, Khan RA, Mishra L et al (2011) Interaction of a ruthenium (II) chalcone complex with double stranded DNA: spectroscopic, molecular docking and nuclease properties. J Photochem Photobiol A 220:145–152

    Article  CAS  Google Scholar 

  • Ghuge SV, Zarkar MC, Deshmukh SR, Choubey SK (2010) Gene (hiv-1 protease) based drug (inhibitor) discovery. J Adv Bioinform Appl Res 1(1):17–26

    CAS  Google Scholar 

  • Gill M, Battaglia G, Smythe C, Thomas J (2011) Dual function ruthenium(II) DNA light-switches: cellular imaging and cytotoxicity. Chem Bio Chem 12(6):877–880

    Article  CAS  PubMed  Google Scholar 

  • Gossens C, Tavernelli I, Rothlisberger U (2008) DNA structural distortions induced by ruthenium–arene anticancer compounds. J Am Chem Soc 130:10921–10928

    Article  CAS  PubMed  Google Scholar 

  • Graves DE, Velea LM (2000) Intercalative binding of small molecules to nucleic acids. Curr Org Chem 4:915–929

    Article  CAS  Google Scholar 

  • Grippo L, Lucidi S (1997) A globally convergent version of the Polak–Ribière conjugate gradient method. Math Prog 78(3):375–391

    Article  Google Scholar 

  • Gupta MS, Anil SN, Alka K (1996) A quantitative structure–activity relationship on DNA directed alkylating agents. Indian J Biochem Biophys 33:234–236

    CAS  PubMed  Google Scholar 

  • Han D, Wang H, Ren N (2004a) Molecular modeling study on the binding mode of polypyridyl transition Ru metal complexes with B-DNA. J Mol Struct 711:185–192

    Article  CAS  Google Scholar 

  • Han D, Wang H, Ren N (2004b) Molecular modelling of B-DNA site recognition by Ru intercalators: molecular shape selection. J Mol Mod 10:216–222

    Article  CAS  Google Scholar 

  • Haq I, Lincoln P, Suh D, Norden B (1995) Interaction of DELTA- and LAMBDA-[Ru(phen)2DPPZ]2+ with DNA: a calorimetric and equilibrium binding study. J Chem Soc 117(17):4788–4796

    Article  CAS  Google Scholar 

  • Heiden MGV (2011) Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov 10:671–684

    Article  Google Scholar 

  • Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2(3):188–200

    Article  CAS  PubMed  Google Scholar 

  • Hypercube (2002) Hyper chem. 7.5. Alberta, Canada

  • Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulation liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Xu L, Sasaki Y (1999) [Ru(CO)(CH3CO2)(tpa)]ClO4·C6H5CH3 (tpa = tris(2-pyridylmethyl)amine), the first ruthenium carbonyl complex of tpa. Inorg Chem Comm 2(4):121–123

    Article  CAS  Google Scholar 

  • Liu XW, Li J, Li H et al (2005) Synthesis characterization, DNA binding and photocleavage of complexes, [Ru(phen)2(6-OH-dppz)]2+ and [Ru(phen)2(6-NO2-dppz)]2+. J Inorg Biochem 99:2372–2380

    Article  CAS  PubMed  Google Scholar 

  • Liu YJ, Liang ZH, Li ZZ et al (2011) Ruthenium(II) polypyridyl complexes: synthesis and studies of DNA binding, photocleavage, cytotoxicity, apoptosis, cellular uptake, and antioxidant activity. DNA Cell Biol 30(10):829–838

    Article  PubMed  Google Scholar 

  • Maheswari PU, Palaniandavar M (2004) DNA binding and cleavage properties of certain tetrammine Ru(II) complexes of modified 1, 10-phenanthroline: effects of hydrogen bonding on DNA binding affinity. J Inorg Biochem 98:219–223

    Article  Google Scholar 

  • Manuel JM, Harry LP (2001) Use of spatial averaging to investigate protein–ligand interactions: a molecular mechanics study. J Young Invest 3:1–15

    Google Scholar 

  • Metcalfe C, Thomas JA (2003) Kinetically inert transition metal complexes that reversibly bind to DNA. Chem Soc Rev 32:215–224

    Article  CAS  PubMed  Google Scholar 

  • Moret ME, Tavernelli I, Rothlisberger U (2009) Combined QM/MM and classical molecular dynamics study of [Ru(bpy)3]2+ in water. J Phys Chem 113:7737–7744

    Article  CAS  Google Scholar 

  • Mukherjee A, Lavery R, Bagchi B et al (2008) On the molecular mechanism of drug intercalation into DNA: a simulation study of the intercalation pathway, free energy, and DNA structural changes. J Am Chem Soc 130:9747–9755

    Article  CAS  PubMed  Google Scholar 

  • Nagababu P, Shilpa M, Sirasani S et al (2011) Synthesis, characterization, DNA binding properties, fluorescence studies and toxic activity of cobalt(III) and ruthenium(II) polypyridyl complexes. J Fluoresc 21(2):563–572

    Article  CAS  PubMed  Google Scholar 

  • Neidle S, Thurston DE (2005) Chemical approaches to the discovery and development of cancer therapies. Nat Rev Cancer 5(4):285–296

    Article  CAS  PubMed  Google Scholar 

  • Nordell P, Westerlund FL, Wilhelmsson M et al (2007) Kinetic recognition of AT-rich DNA by ruthenium complexes. Angew Chem 119:2253–2256

    Article  Google Scholar 

  • Pindur U, Jansen M, Lemster T (2005) Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr Med Chem 12(24):2805–2847

    Article  CAS  PubMed  Google Scholar 

  • Reddy KL, Ashwini KK, Sirasani S (2011) Synthesis, DNA binding, DNA photocleavage of the Cobalt(III) complexes [Co(bpy)2MDPPZ]3+, [Co(dmb)2MDPPZ]3+ and [Co(phen)2MDPPZ]3+ and their antimicrobial activity. Synth React Inorg Met-Org Nano-Met Chem 41(2):182–192

    CAS  Google Scholar 

  • Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) Patch Dock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silverman AP, Kool ET (2005) Quenched probes for highly specific detection of cellular RNAs. Trends Biotech 23(5):225–230

    Article  CAS  Google Scholar 

  • Sirasani S, Dabrowiak JC, Chaires JB (1992) Neither delta- nor lambda-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation. Biochemistry 31:9319–9324

    Article  Google Scholar 

  • Tajmir-Riahi HA (2005) AZT binding to DNA and RNA: molecular modeling and biological significance. J Iran Chem Soc 2(2):78–84

    Article  CAS  Google Scholar 

  • Yang P, Han DX (2000) Molecular modeling of the binding mode of chiral metal complexes delta- and lambda-Co(phen)2dppz (3+) with B-DNA. Sci China B 43(5):516–523

    Article  CAS  Google Scholar 

  • Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Comm 44:4565–4579

    Article  PubMed  Google Scholar 

  • Zhang QL, Liu JG, Liu J, Xue GQ, Li H et al (2001) DNA-binding and photocleavage studies of cobalt(III) mixed-polypyridyl complexes containing 2-(2-chloro-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline. J Inorg Biochem 85(4):291–296

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Chen J, Liang Y (2010) DNA binding cytotoxicity, and apoptotic-inducing activity of ruthenium(II) polypyridyl complex. Acta Biochim Biophys Sin 42(7):440–449

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors NNT, MKK, MV, and DR are grateful to The Principal and The Head, Department of Chemistry, Nizam College for the facilities. The author PNB is grateful to The Principal, University College of Science and The Head, Department of Chemistry, University College of Science, Osmania University for the facilities. The authors PNB is grateful to the Department of Science & Technology, New Delhi, India, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uma Vuruputuri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nambigari, N., Dulapalli, R., Mustyala, K.K. et al. Molecular dynamic simulations of Co(III) and Ru(II) polypyridyl complexes and docking studies with dsDNA. Med Chem Res 22, 5557–5565 (2013). https://doi.org/10.1007/s00044-013-0540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-013-0540-5

Keywords

Navigation