Skip to main content
Log in

Synthesis and leishmanicidal activity of quinoline–triclosan and quinoline–eugenol hybrids

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In this study, hybrids 7–12 and 19–24 were synthesized via Williamson reaction of O-Quinaldine alkyl bromide plus eugenol and O-triclosan alkyl bromide plus 8-hydroxyquinaldine, respectively. Structures of the products were elucidated by spectroscopic analysis. The compounds synthesized were evaluated for antileishmanial activity against L. panamensis amastigotes and cytotoxic activity against U-937 cells. The compounds 19, 20, and 21 that are 8-hydroxyquinaldine linked to triclosan by 3, 4, and 5-carbon space, respectively, were more active against axenic amastigotes (EC 50 = 23.6, 9.7, and 4.1 μg/ml, respectively). Compounds 19 and 21 were also active against intracellular amastigotes with EC 50 vales of 6.4 and 2.4 μg/ml, respectively, making these compounds promising for the development of new antileishmanial drugs.

Graphical Abstract

Quinoline–triclosan and quinoline–eugenol hybrids were obtained using Williamson etherification reactions. Leishmanicidal activity and cytotoxicity of these compounds are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2

Similar content being viewed by others

References

  • Akendengue B, Ngou-Milama E, Laurens A, Hocquemiller R (1999) Recent advances in the fight against leishmaniasis with natural products. Parasite 6:3–8

    PubMed  CAS  Google Scholar 

  • Antoine JC, Jouanne C, Ryter A (1989) Megasomes as the targets of leucine methyl ester in Leishmania amawnensis amastigotes. Parasitol 99:1–9

    Article  CAS  Google Scholar 

  • Ayad F, Tilley L, Deady L (2001) Synthesis, antimalarial activity and inhibition of haem detoxification of novel bisquinolines. Bioorg Med Chem Lett 11:2075–2077

    Article  PubMed  CAS  Google Scholar 

  • Bhargava HN, Leonard PA (1996) Triclosan: applications and safety. Am J Infect Control 24:209–218

    Article  PubMed  CAS  Google Scholar 

  • Bollini M, Casal J, Bruno A (2008) Design, synthesis, and antitumor activity of new bis-aminomethylnaphthalenes. Bioorg Med Chem 16:8003–8010

    Article  PubMed  CAS  Google Scholar 

  • Chaudhuri P, Majumder H, Bhattacharya S (2007) Synthesis, DNA binding, and Leishmania topoisomerase inhibition activities of a novel series of anthra[1, 2-d]imidazole-6, 11-dione derivatives. J Med Chem 50:2536–2540

    Article  PubMed  CAS  Google Scholar 

  • Chhibber M, Kumar G, Parasuraman P, Ramya TNC, Surolia N, Surolia A (2006) Novel diphenyl ethers: design, docking studies, synthesis and inhibition of enoyl ACP reductase of Plasmodium falciparum and Escherichia coli. Bioorg Med Chem 14:8086–8098

    Article  PubMed  CAS  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis-current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  PubMed  CAS  Google Scholar 

  • Dade J, Provot O, Moskowitz H, Mayrargue J, Prina E (2001) Synthesis of 2-substituted trifluoromethylquinolines for the evaluation of leishmanicidal activity. Chem Pharm Bull 49:480–483

    Article  PubMed  CAS  Google Scholar 

  • Desjeux P (2004) Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27:305–318

    Article  PubMed  CAS  Google Scholar 

  • Dietze R, Carvalho SF, Valli LC, Berman J, Brewer T, Milhous W, Sanchez J, Schuster B, Grogl M (2001) Phase 2 trial of WR6026, an orally administered 8-aminoquinoline, in the treatment of visceral leishmaniasis caused by Leishmania chagasi. Am J Trop Med Hyg 65:685–689

    PubMed  CAS  Google Scholar 

  • Dillard RD, Pavey DE, Benslay DN (1973) Synthesis and antiinflammatory activity of some 2,2-dimethyl-1,2-dihydroquinolines. J Med Chem 16:251–253

    Article  PubMed  CAS  Google Scholar 

  • Doube D, Blouin M, Brideau C, Chan C, Desmarais C, Ethier D, Falgueyret JP, Friesen RW, Girard M, Girard Y, Guay J, Tagari P, Young RN (1998) Quinolines as potent 5-lipoxygenase inhibitors: synthesis and biological profile of L-746, 530. Bioorg Med Chem Lett 8:1255–1260

    Article  Google Scholar 

  • Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, Marty P, Michel G, Faugere B, Dumon H (1997) In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: study of 37 strains collected from patients with visceral leishmaniasis. Antimicrob Agents Chemother 41:827–830

    PubMed  CAS  Google Scholar 

  • Finney JD (1971) Probit analysis, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fournet A, Ferreira ME, Arias ARD, De Ortiz ST, Fuentes S, Nakayama H, Schinini A, Hocquemiller R (1996) In vivo efficacy of oral and intralesional administration of 2-substituted quinolines in experimental treatment of new world cutaneous leishmaniasis caused by Leishmania amazonensis. Antimicrob Agents Chemother 40:2447–2451

    PubMed  CAS  Google Scholar 

  • Freundlich JS, Anderson JW, Sarantakis D, Shieh H, Yu M, Valderramos J, Lucumi E, Kuo M, Jacobs WR, Schiehser GA, Fidock DA, Jacobus DP, Sacchettini JC (2005) Synthesis, biological activity, and X-ray crystal structural analysis of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 1: 4′-substituted triclosan derivatives. Bioorg Med Chem Lett 15:5247–5252

    Article  PubMed  CAS  Google Scholar 

  • Freundlich JS, Yu M, Lucumi E, Kuo M, Tsai H, Valderramos J, Karagyozov L, Jacobs WR, Schiehser GA, Fidock DA, Jacobus DP, Sacchettini JC (2006) Synthesis and biological activity of diaryl ether inhibitors of malarial enoyl acyl carrier protein reductase. Part 2: 2′-substituted triclosan derivatives. Bioorg Med Chem Lett 16:2163–2169

    Article  PubMed  CAS  Google Scholar 

  • Freundlich JS, Wang F, Tsai H, Kuo M, Shieh H, Anderson JW, Nkrumah LJ, Valderramos J, Yu M, Kumar TRS, Valderramos SG, Jacobs WR, Schiehser GA, Jacobus DP, Fidock DA, Sacchettini JC (2007) X-ray structural analysis of Plasmodium falciparum enoyl acyl carrier protein reductase as a pathway toward the optimization of triclosan antimalarial efficacy. J BiolChem 282:25436–25444

    CAS  Google Scholar 

  • Kapoor M, Reddy C, Krishnasastry MV, Surolia N, Surolia A (2004) Slow-tight-binding inhibition of enoyl–acyl carrier protein reductase from Plasmodium falciparum by triclosan. Biochem J 381:719–724

    Article  PubMed  CAS  Google Scholar 

  • Keith CT, Borisy A, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  PubMed  CAS  Google Scholar 

  • Kidwai M, Bhushan KR, Sapra P, Saxena RK, Gupta R (2000) Alumina-supported synthesis of antibacterial quinolines using microwaves. Bioorg Med Chem 8:69–72

    Article  PubMed  CAS  Google Scholar 

  • McLeod R, Muench SP, Rafferty JB, Kyle DE, Mui EJ, Kirisits MJ, Mack DG, Roberts CW, Samuel BU, Lyons RE, Dorris M, Milhous WK, Rice DW (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicomplexan Fab I. Int J Parasitol 31:109–113

    Article  PubMed  CAS  Google Scholar 

  • Meunier B (2008) Hybrid molecules with a dual mode of action: dream or reality? Acc Chem Res 41:69–77

    Article  PubMed  CAS  Google Scholar 

  • Mohammed AF, Fournet A, Prina E, Mouscadet JF, Franck X, Hocquemiller R, Figadere B (2003) Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem 11:5013–5023

    Article  Google Scholar 

  • Musonda C, Whitlock G, Witty M, Brun R, Kaiser M (2009) Chloroquine–astemizole hybrids with potent in vitro and in vivo antiplasmodial activity. Bioorg Med Chem Lett 19:481–484

    Article  PubMed  CAS  Google Scholar 

  • Nakamura TU, Mendonca-Filho R, Morgado J, Korehisa P et al (2006) Antileishmanial activity of eugenol-rich essential oil from Ocimum gratissimum. Parasitol Int 55:99–105

    Article  PubMed  Google Scholar 

  • Nakayama H, Loiseau PM, Bories C, de Ortiz ST, Schinini A, Serna E, de Arias AR, Mohamed AF, Franck X, Figadere B, Hocquemiller R, Fournet A (2005) Efficacy of orally administered 2-substituted quinolines in experimental Murine cutaneous and Visceral leishmaniases. Antimicrob Agents Chemother 49:4950–4956

    Article  PubMed  CAS  Google Scholar 

  • Narsinh D, Anamik S (2001) Synthesis and anti-HIV studies of some substituted pyrimidinediones, ethoxy pyrano (3,2-c) quinolines and hydrazino pyrano (3,2-c) quinolines. Ind J Pharm Sci 63:211–215

    Google Scholar 

  • Olliaro PL, Bryceson AD (1993) Practical progress and new drugs for changing patterns of Leishmaniasis. Parasitol Today 9:323–328

    Article  PubMed  CAS  Google Scholar 

  • Opsenica I, Opsenica D, Lanteri CA, Anova L, Milhous WK, Smith KS, Solaja BA (2008) New chimeric antimalarials with 4-aminoquinoline moiety linked to a tetraoxane skeleton. J Med Chem 51:6216–6219

    Article  PubMed  CAS  Google Scholar 

  • Ouellette M, Drummelsmith J, Papadopoulou B (2004) Leishmaniasis: drugs in the clinic, resistance and new developments. Drug Resist Updat 7:257–266

    Article  PubMed  CAS  Google Scholar 

  • Palit P, Paira P, Hazra A, Banerjee S, Das Gupta A, Dastidar S, Mondal N (2009) Phase transfer catalyzed synthesis of bis-quinolines: antileishmanial activity in experimental visceral leishmaniasis and in vitro antibacterial evaluation. Eur J Med Chem 44:845–853

    Article  PubMed  CAS  Google Scholar 

  • Perozzo R, Kuo M, Sidhu AbS, Valiyaveettil JT, Bittman R, Jacobs WR Jr, Fidock DA, Sacchettini JC (2002) Structural elucidation of the specificity of the antibacterial agent triclosan for malarial enoyl acyl carrier protein reductase. J Biol Chem 277:13106–13114

    Article  PubMed  CAS  Google Scholar 

  • Robledo SM, Valencia AZ, Saravia NG (1999) Sensitivity to Glucantime of Leishmania viannia isolated from patiens prior to treatment. J Parasitol 85:360–366

    Article  PubMed  CAS  Google Scholar 

  • Robledo S, Osorio E, Jaramillo L (2005) In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimic Agents Chemoth 49:1652–1655

    Article  CAS  Google Scholar 

  • Roth BL, Sheffler DJ, Kroeze WK (2004) Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov 3:353–359

    Article  PubMed  CAS  Google Scholar 

  • Surolia N, Surolia A (2001) Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase. Nat Med 7:167–173

    Article  PubMed  CAS  Google Scholar 

  • Taylor VM, Muñoz DL, Cedeño DL, Vélez ID, Jones MA, Robledo SM (2010) Leishmania tarentolae: utility as an in vitro model for screening of antileishmanial agents. Exp Parasitol 126:471–475

    Article  PubMed  CAS  Google Scholar 

  • Tempone A, Melo A, Da Silva P, Brandt C, Martinez F, Borborema A (2005) Synthesis and antileishmanial activities of novel 3-substituted quinolines. Antimicrob Agents Chemother 49:1076–1080

    Article  PubMed  CAS  Google Scholar 

  • Varela MRE, Muñoz DL, Robledo SM, Kolli BK, Dutta S, Chang KP, Muskus C (2009) Leishmania (Viannia) panamensis: an in vitro assay using the expression of GFP for screening of antileishmanial drug. Exp Parasitol 122:134–139

    Article  Google Scholar 

  • Vennerstrom JL, Ager AL Jr, Dorn A, Andersen SL, Gerena L, Ridley RG, Milhous WK (1998) Bisquinolines. 2. Antimalarial N,N-Bis(7-chloroquinolin-4-yl)heteroalkanediamines. J Med Chem 41:4360–4364

    Article  PubMed  CAS  Google Scholar 

  • Walsh JJ, Coughlan D, Heneghan N, Gaynor C, Bell A (2007) A novel artemisinin–quinine hybrid with potent antimalarial activity. Bioorg Med Chem Lett 17:3599–3602

    Article  PubMed  CAS  Google Scholar 

  • Weninger B, Robledo S, Arango G, Deharo E, Aragón R, Muñoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnophar 78:193–200

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Blandine Séon-Méniel for the help during NMR measurements. This research was supported financially by the Universidad de Antioquia (Programa de Sostenibilidad).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson Cardona.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arango, V., Domínguez, J.J., Cardona, W. et al. Synthesis and leishmanicidal activity of quinoline–triclosan and quinoline–eugenol hybrids. Med Chem Res 21, 3445–3454 (2012). https://doi.org/10.1007/s00044-011-9886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9886-8

Keywords

Navigation