Skip to main content

Advertisement

Log in

Synthesis, anticancer, anti-HIV-1, and antimicrobial activity of some tricyclic triazino and triazolo[4,3-e]purine derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

In an effort to etablish new candidates with improved antineoplastic, anti-HIV-1 and antimicrobial activities, the synthesis of some new triazino and triazolo[4,3-e]purine derivatives is described: 6,8-dimethyl-1,4-dihydro-1,2,4-triazino[4,3-e]purine-7,9(6H, 8H)-diones 36; 5,7,9-trimethyl-1,2,4-triazolo[4,3-e]purine-6,8(5H, 7H, 9H)-diones 1113, together with the synthesis of the 8-substituted purine derivative: 8-(3,5-diamino-1H-pyrazol-4-yl)diazenyl-1,3-dimethyl-1H-purine-2,6(3H, 7H)-dione 7. The prepared compounds were tested for their in vitro anticancer, anti-HIV and antimicrobial activities. The results of the in vitro anticancer screening revealed that compound 3 exhibited considerable activity against melanoma MALME-3 M, non-small lung cancer HOP-92 and breast cancer T-47D (GI50 values of 25.2, 31.8, and 32.9 μM, respectively). The anti-HIV-1 results indicated that compounds 7 and 13c displayed moderate activity (maximum % cell protection 30.52 and 35.54 at 2 × 10−4 M, respectively). The in vitro antimicrobial data showed that compound 12 was the most active against P. aeruginosa, it was equipotent to ampicillin (MIC < 100 μg/ml). While compound 11d was the most active against P. vulgaris, it was as active as ampicillin (MIC < 50 μg/ml). In addition, compounds 12 and 13c were the most active against S. aureus (MIC <50 and <25 μg/ml, respectively). On the other hand, the tested compounds devoid of antifungal activity except 6b and 11c which showed weak activity against A. niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Abadi AH, El-Subbagh HI, Al-Khamees HA (1999) Synthesis, antitumor and antitubercular evaluation of certain new xanthenone and acridinone analogs. Arzneim-Forsch Drug Res 49(1):259

    CAS  Google Scholar 

  • Avery TL, Finch RA, Vasquez KM, Radparver S, Hanna NB, Revankar GR, Robins RK (1990) Chemotherapeutic characterization in mice of 2-amino-9-β-d-ribofuranosylpurine-6-sulfinamide (sulfinosine), a novel purine nucleoside with unique antitumor properties. Cancer Res 50:2625–2630

    PubMed  CAS  Google Scholar 

  • Banerjee SK, Chatterjee SN (1981) Radiomimetic property of furazolidone and the caffeine enhancement of its lethal action on the vibrios. Chem Biol Interact 37:321–335

    Article  PubMed  CAS  Google Scholar 

  • Boyed MR, Paull KD (1995) Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res 34:91–109

    Article  Google Scholar 

  • Charles BG, Rawal BD (1973) Synergistic effect of methyl-substituted xanthines and neomycin sulphate on Staphylococcus aureus and Pseudomonas aeruginosa in vitro. Lancet 1:971–973

    Article  PubMed  CAS  Google Scholar 

  • Chen ZY, Cheng AC, Wang MS, Xu DW, Zeng W, Li Z (2007) Antiviral effects of PNA in duck hepatitis B virus infection model. Acta Pharmacol Sin 28(10):1652–1658

    Article  PubMed  CAS  Google Scholar 

  • Conte JE, Barriere SL (1988) Manual of antibiotics and infectious diseases, 1st edn. Lea and Febiger, USA

  • ElAshry ES, Rashed N, Abdel-Rahman A, Awad LF, Rashed HA (2006) Synthesis of 2-bromomethyl-3-hydroxy-2-hydroxymethylpropyl pyrimidine and theophylline nucleosides under microwave irradiation. Evaluation of their activity against hepatitis B virus. Nucleosides Nucleotides Nucl Acids 25(8):925–939

    Article  CAS  Google Scholar 

  • Filippatos E, Papadaki-Valiraki A, Todoulou O, Jacquemin-Sablon A (1994) Synthesis of N-(9H-xanthen-9-yl)aminoalkanamide and N-(9H thioxanthen-9-yl)aminoalkanamide derivatives and their in vitro evaluation as potential intercalators and antitumor drugs. Arch Pharm 327:61–66

    Article  CAS  Google Scholar 

  • Grever MR, Schepartz SA, Chabner BA (1992) The National Cancer Institute: cancer drug discovery and development program. Semin Oncol 19:622–638

    PubMed  CAS  Google Scholar 

  • Hadden JW, Simon LN, Giner-Sorolla A (1986) Dihydrothiazolo derivatives. Pat. Specif. AU 554: 372; through Chem Abstr 108, 37511s (1988)

  • Hosseinzadeh H, Bazzaz BSF, Sadati MM (2006) In vitro evaluation of methylxanthines and some antibiotics: interaction against Staphylococcus aureus and Pseudomonas aeruginosa. Iran Biomed J 10(3):163–167

    CAS  Google Scholar 

  • Ito S, Koshikawa N, Mochizuki S, Takenaga K (2007) 3-Methyladenine suppresses cell migration and invasion of HT1080 fibrosarcoma cells through inhibiting phosphoinositide 3-kinases independently of autophagy inhibition. Int J Oncol 31(2):261–268

    PubMed  CAS  Google Scholar 

  • Jeha S, Kantarjian H (2007) Clofarabine for the treatment of acute lymphoblastic leukemia. Expert Rev Anticancer Ther 7(2):113–118

    Article  PubMed  CAS  Google Scholar 

  • Johnson VA, Merril DP, Videler JA, Chou TC, Byington RE, Eron JJ, D’Aquila RT, Hirsch MS (1991) Two-drug combinations of zidovudine, didanosine, and recombinant interferon-α. A inhibit replication of zidovudine-resistant human immunodeficiency virus type 1 synergistically in vitro. J Infect Dis 164:646–655

    Article  PubMed  CAS  Google Scholar 

  • Jones JW, Robins RK (1960) Potential purine antagonists. The preparation and reactions of some 8-diazopurines. J Am Chem Soc 82:3773–3779

    Article  CAS  Google Scholar 

  • Kascatan-Nebioglu A, Melaiye A, Hindi K, Durmus S, Panzner MJ, Hogue LA, Mallett RJ, Hovis CE, Coughenour M, Crosby SD, Milsted A, Ely DL, Tessier CA, Cannon CL, Youngs WJ (2006) Synthesis from caffeine of a mixed N-heterocyclic carbene-silver acetate complex active against resistant respiratory pathogens. J Med Chem 49(23):6811–6818

    Article  PubMed  CAS  Google Scholar 

  • Kimura M, Kato A, Okabayashi I (1992) Acridine derivatives. IV. Synthesis, molecular structure, and antitumor activity of the novel 9-anilino-2,3-methylenedioxyacridines. J Heterocycl Chem 29:73–80

    Article  CAS  Google Scholar 

  • Klosa J (1956) Condensation of caffein hydrazide-8 with aldehydes and ketones. Arch Pharm 289(4): 211–217; through Chem Abstr 51: 7383f (1957)

    Google Scholar 

  • Kmonickova E, Potmesil P, Holy A, Zidek Z (2006) Purine P1 receptor-dependent immunostimulatory effects of antiviral acyclic analogues of adenine and 2,6-diaminopurine. Eur J Pharmacol 530:179–187

    Article  PubMed  CAS  Google Scholar 

  • Lazarczyk M, Grzela T, Niderla J, Lazarczyk MA, Milewski L, Dziunycz P, Skopinski P, Golab J (2004) Differential influence of pentoxifylline on murine colon adenocarcinoma and melanoma-derived metastatic tumor development in lungs. Oncol Rep 11(5):1121–1125

    PubMed  CAS  Google Scholar 

  • Lech-Maranda E, Korycka A, Robak T (2006) Pharmacological and clinical studies on purine nucleoside analogs-new anticancer agents. Mini Rev Med Chem 6:575–581

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Choi Y, Gullen E, Schuete-Wirtz S, Raymond F, Schinazi RF, Cheng Y, Chu CK (1999) Synthesis and anti-HIV and anti-HBV activities of 2′-fluoro-2′,3′-unsaturated l-nucleosides. J Med Chem 42(7):1320–1328

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Fu L, Yeo H, Zhu JL, Chou CK, Kou YH, Yeh SF, Gullen E, Austin D, Cheng YC (2005) Inhibition of hepatitis B virus gene expression and replication by helioxanthin and its derivative. Antivir Chem Chemother 16(3):193–201

    PubMed  CAS  Google Scholar 

  • McLaren C, Datema R, Knupp CA, Buroker RA (1991) Didanosine. Antivir Chem Chemother 2(6):321–328

    CAS  Google Scholar 

  • Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M, Campbell H, Mayo J, Boyd M (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766

    Article  PubMed  CAS  Google Scholar 

  • Palmer BD, Rewcastle GW, Atwell GJ, Baguley BC, Denny WA (1988) Potential antitumor agents. 54. Chromophore requirements for in vivo antitumor activity among the general class of linear tricyclic carboxamides. J Med Chem 31(4):707–712

    Article  PubMed  CAS  Google Scholar 

  • Peifer C, Buhler S, Hauser D, Kinkel K, Totzke F, Schachtele C, Laufer S (2009) Design, synthesis and characterization of N9/N7-substituted 6-aminopurines as VEGF-R and EGF-R inhibitors. Eur J Med Chem 44(4):1788–1793

    Article  PubMed  CAS  Google Scholar 

  • Pinguet F, Mavel S, Galtier C, Gueiffier A (1999) Synthesis and cytotoxicity of novel pyrido[1,2e]purines on multidrug resistant human MCF7 cell 54. Pharmazie 45(12):876–881

    Google Scholar 

  • Piosik J, Gwizdek-Wisniewska A, Ulanowska K, Ochocinski J, Czyz A, Wegrzyn G (2005) Methylxanthines (caffine, pentoxifylline and theophlline) decrease the mutagenic effect of daunomycin, doxorubicin and mitoxanthrone. Acta Biochima Pol 52(4):923–926

    CAS  Google Scholar 

  • Priewe H, Poljak A (1955) 8-Hydrazino-purine and their conversion into pyrazolone. Chem Ber 88:1932–1937; through Chem Abstr 50, 12067d (1956)

    Google Scholar 

  • Ramasamy K, Imamura N, Hanna NB, Finch RA, Avery TL, Robins RK, Revankar GR (1990) Synthesis and antitumor evaluation in mice of certain 7-deazapurine (pyrrolo[2,3-d]pyrimidine) and 3-deazapurine (imidazo[4,5-c]pyridine) nucleosides structurally related to sulfenosine, sulfinosine, and sulfonosine. J Med Chem 33(4):1220–1225

    Article  PubMed  CAS  Google Scholar 

  • Rida SM, Ashour FA, El-Hawash AM, El-Semary MM, Badr MH, Shalaby MA (2005) Synthesis of some novel benzoxazole derivatives as anticancer, anti-HIV-1 and antimicrobial agents. Eur J Med Chem 40:949–959

    Article  PubMed  CAS  Google Scholar 

  • Rida SM, Ashour FA, El-Hawash AM, El-Semary MM, Badr MH (2007) Synthesis of some novel substituted purine derivatives as potential anticancer, anti-HIV and antimicrobial agents. Arch Pharm Chem Life Sci 340:185–194

    Article  CAS  Google Scholar 

  • Saito Y, Gopalan B, Mhashilkar AM, Roth JA, Chada S, Zumstein L, Ramesh R (2003) Adenovirus-mediated PTEN treatment combined with caffeine produces a synergistic therapeutic effect in colorectal cancer cells free. Cancer Gene Ther 10(11):803–813

    Article  PubMed  CAS  Google Scholar 

  • Scott AC (1989) Laboratory cotrol of antimicrobial therapy. In: Collee JG, Duguid JP, Faster AG, Marmion BP (eds) Mackie and Mc-Cartney practical medical microbiology, vol 2, 13th edn. Churchill Livingstone, Edinburgh, pp 161–181

    Google Scholar 

  • Settimo AD, Settimo FD, Marini AM, Primofiore G, Salerno S, Viola G, Via LD, Magno SM (1998) Synthesis, DNA binding and in vitro antiproliferative activity of purinoquinazoline, pyridopyrimidopurine and pyridopyrimidobenzimidazole derivatives as potential antitumor agents. Eur J Med Chem 33:685–696

    Article  Google Scholar 

  • Steurer M, Pall G, Richards S, Schwarzer G, Bohlius J, Greil R (2006) Single-agent purine analogues for the treatment of chronic lymphocytic leukaemia: a systematic review and meta-analysis. Cancer Treat Rev 32:377–389

    Article  PubMed  CAS  Google Scholar 

  • Tutonda MG, Buckheit RW Jr, Agrawal VK, Broom AD (1998) Antiviral Oligo-and polyribonucleotides containing selected triazolo[2,3-a]purines. J Med Chem 41(25):4958–4964

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Adachi T, Sakakibara J, Asano M, Nakagami J (1987) Synthesis, antitumor activity and vascular relaxing effect of purino[7, 8]-6-azapteridines and [1, 2, 4]triazino-[3, 2-f]purines. Chem Pharm Bull (Tokyo) 35(10):4031–4038

    Article  CAS  Google Scholar 

  • Valiaeva N, Beadle JR, Aldern KA, Trahan J, Hostetler KY (2006) Synthesis and antiviral evaluation of alkoxyalkyl esters of acyclic purine and pyrimidine nucleoside phosphonates against HIV-1 in vitro. Antiviral Res 72(1):10–19

    Article  PubMed  CAS  Google Scholar 

  • Verones V, Flouquet N, Farce A, Carato P, Leonce S, Pfeiffer B, Berthelot P, Lebegue N (2010) Synthesis, biological evaluation and docking studies of 4-amino-teyrahydroquinazolono[3,2-e]purine derivatives. Eur J Med Chem 45:5678–5684

    Article  PubMed  CAS  Google Scholar 

  • Weislow OW, Kiser R, Fine D, Bader J, Shoemaker RH, Boyd MR (1989) New soluble-formazan assay for HIV-1 cytopathic effects: application to high-flux screening of synthetic and natural products for AIDS-antiviral. J Natl Cancer Inst 81(8):577–586

    Article  PubMed  CAS  Google Scholar 

  • Woo PWK, Kostlan CR, Sircar JC, Dong MK, Gilbertsen RB (1992) Inhibitors of human purine nucleoside phosphorylase. Synthesis and biological activities of 8-amino-3-benzylhypoxanthine and related analogs. J Med Chem 35(8):1451–1457

    Article  PubMed  CAS  Google Scholar 

  • Zinchenko G, Kremzer AA, Strokin YV, Krasovskii AN, Steblyuk PN (1987) Synthesis and biological properties of ylidene derivatives of 7-(3-chloro-2-buten-1-yl)-8-hydrazinotheophylline. Farm Zh (Kiev) 3:39–41; through Chem Abstr, 108, 150134j (1988)

    Google Scholar 

Download references

Acknowledgments

The authors with to thank Dr. Manal A. Shalaby, Genetic Engineering and Biotechnology Research Institute (GEBRI), Mubark City for Scientific Research and Technology Application, Borg El-Arab, Alexandria, Egypt for performing the antibacterial and antifungal screening. The authors are also grateful to the staff of the Department of Health and Human Services, National Cancer Institute, Bethesda, Maryland, USA for the anti-cancer and anti-HIV reports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fawzia A. Ashour.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashour, F.A., Rida, S.M., El-Hawash, S.A.M. et al. Synthesis, anticancer, anti-HIV-1, and antimicrobial activity of some tricyclic triazino and triazolo[4,3-e]purine derivatives. Med Chem Res 21, 1107–1119 (2012). https://doi.org/10.1007/s00044-011-9612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9612-6

Keywords

Navigation