Skip to main content

Advertisement

Log in

Medicinal chemistry of polycyclic cage compounds in drug discovery research

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Saturated polycyclic hydrocarbon structures such as the monocyclic octane, bicylic norbornane and tricyclic adamantane have attracted the attention of several research groups since the 1930s. In the 1950s the synthesis of the so called bird-cage pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione, also known as Cookson’s diketone was reported. This pentacyclic cage diketone is the product of the intramolecular photocyclized Diels Alder adduct of p-bensoquinone and cyclopentadiene. The conversion of this diketone to its monoketone analog formed the basis of a variety of monosubstituted derivatives. Furthermore, acid-based rearrangement reactions of hydroxyl-substituted compounds led to, amongst others, the unique D3-trishomocubane symmetrical compounds, which consists of only five-membered carbon rings. The D3 stereoisomerism of the trishomobubane affords unique chemical challenges with potential medicinal implications. The medicinal chemistry of these cage compounds gained momentum in the 1980s with the discovery of the calcium-channel-modulating effects and antiviral activity thereof. The 1990s and 2000s saw several reports on a variety of pharmacological areas, i.e., dopaminergic, catecholaminergic, and focusing on disorders, in particular that of the central nervous system, such as neurodegeneration (Parkinson’s disease). These polycyclic structures have proved to be very useful in drug discovery research, in particular during the past 25 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Fig. 2
Fig. 3
Fig. 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Fig. 5
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Fig. 6

Similar content being viewed by others

References

  • Carpy AJM, Oliver DW (1994) 3-Phenyl-D3-trishomocuban-4-ol: structure and configuration. Helv Chimica Acta 77:543–546

    Article  CAS  Google Scholar 

  • Chakrabarti JK, Hotten TM, Sutton S, Tupper DE (1976) Adamantane and protoadamantanealkanamines as potential anti-Parkinson agents. J Med Chem 19(7):967–969

    Article  PubMed  CAS  Google Scholar 

  • Cookson RC, Grundwell W, Hudec (1958) Synthesis of cage-like molecules by irradiation of Diels-Alder adducts. J Chem Ind 1003–1004

  • Davies WL, Grunert RR, Haff RF, McGahen JW, Neumayer EM, Paulshock M, Watts JC, Wood TR, Hermann EC, Hoffman CE (1964) Antiviral activity of adamantamine. Science 144:862–863

    Article  PubMed  CAS  Google Scholar 

  • Dekker TG, Oliver DW (1979) The synthesis of (D3)-trishomocuban-4-ol via carbenium ion rearrangements of pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8-ol. S Afri J Chem 32:45–48

    CAS  Google Scholar 

  • Dekker TG, Oliver DW, Venter A (1980) 1-Methyl-(D3)-trishomocubane. Tetrahedron Lett 21:3101–3104

    Article  CAS  Google Scholar 

  • Eaton PE, Hudson RA, Giodano C (1974) Trishomocubanone (pentacyclo[6.3.0.02,6.03,10.05,9]undecan-4-one). J Chem Soc Chem Commun 987–991

  • Geldenhuys WJ, Malan SF, Murugesan T, Van der Schyf CJ, Bloomquista JR (2004) Synthesis and biological evaluation of pentacyclo[5.4.0.02,6.03,10.05,9]undecane derivatives as potential therapeutic agents in Parkinson’s disease. Bioorg Med Chem 12:1799–1806

    Article  PubMed  CAS  Google Scholar 

  • Geldenhuys WJ, Malan SF, Bloomquist JR, Van der Schyf CJ (2007) Structure–activity relationships of pentacycloundecylamines at the N-methyl-d-aspartate receptor. Bioorg Med Chem 15:1525–1532

    Article  PubMed  CAS  Google Scholar 

  • Godleski SA, Schleyer P von R, Osawa E, Kent GJ (1974) Syntheses of (D3)-Trishomocubane (Pentacyclo[6.3.0.02,6.03,10.05,9]undecane) by Rearrangement. J Chem Soc Chem Commun 976–977

  • Griffin GW, Marchand AP (1989) Synthesis and chemistry of cubanes. Chem Rev 89: 977–1010

    Article  Google Scholar 

  • Grobler E, Grobler A, Van der Schyf JC, Malan SF (2006) Effect of polycyclic cage amines on the transmembrane potential of neuronal cells. Bioorg Med Chem 14:1176–1181

    Article  PubMed  CAS  Google Scholar 

  • Kent GJ, Godleski SA, Osawa E, Schleyer P Von R (1977) Synthesis and relative stability of (D3)-trishomocubane (pentacyclo[6.3.0.02,6.03,10.05,9]undecane), the pentacycloundecane stabilomer. J Org Chem 42:3852–3859

    Article  CAS  Google Scholar 

  • Larrick JW, Lipton SA, Wang Y, Ye W, Stemler JS (2002) US patent no. US6444702

  • Lenoir D, Glaser R, Mison P, Schleyer Pvon R (1971) Synthesis of 1,2- and 2,4-disubstituted adamantanes. The protoadamantane route. J Org Chem 36: 1821–1826

    Article  Google Scholar 

  • Malan SF, Van den Heever I, Van der Schyf CJ (1996) Screening of polycyclic amines for calcium channel activity. J Pharm Med 6:125–135

    Google Scholar 

  • Malan SF, Dockendolf G, Van der Walt JJ, Van Rooyen JM, Van der Schyf CJ (1998) Enantiomeric resolution of the calcium channel antagonist 8-benzylamino-8,11-oxapentacyclo[5.4.0.02,6.03,10.05,9]undecane (NGP1–01). Pharmazie 53:859–862

    PubMed  CAS  Google Scholar 

  • Malan SF, Van der Walt JJ, Van der Schyf CJ (2000) Structure–activity relationships of polycyclic amines with calcium channel blocking activity. Arch Pharm Med Chem 333:10–16

    Article  CAS  Google Scholar 

  • Malan SF, Dyason K, Wagenaar B, Van der Walt JJ, Van der Schyf CJ (2003) The structure and ion channel activity of 6-benzylamino-3-hydroxyhexacyclo[6.5.0.03,7.04,12.05,10.09,13] tridecane. Arch Pharm Med Chem 336:127–133

    Article  CAS  Google Scholar 

  • Marchand AP, Arney BE, Dave PR (1988) Transannular cyclizations in the pentacyclo[5.4.0.02,6.03,10.05,9]undecane-8,11-dione system: a reinvestigation. J Org Chem 53:2644–2647

    Article  CAS  Google Scholar 

  • Marchand AP (1989) Synthesis and chemistry of homocubanes, bishomocubanes and trishomocubanes. Chem Rev 89:1011–1033

    Article  CAS  Google Scholar 

  • Marchand AP (1989) In: Advances in theoretically interesting molecules, Vol. 1. Greenwich, CT: JAI, Thummel RP 357–399

  • Marchand AP (1995) Polycyclic cage compounds: reagents, substrates, and materials for the 21st century. Aldrichimica Acta 28:95–104

    CAS  Google Scholar 

  • Nakazaki M (1984) The synthesis and stereochemistry of chiral organic-molecules with high symmetry. Top Sterochem 15:199–251

    Article  CAS  Google Scholar 

  • Oliver DW, Dekker TG (1988) (D3)-Trishomocubane stereoisomerism. S Afri J Sci 84:407–409

    CAS  Google Scholar 

  • Oliver DW, Dekker TG, Snyckers FO (1991) Pentacyclo[5.4.0.02,6.03,10.05,9]undecylamines. Synthesis and pharmacology. Eur J Med Chem 26:375–379

    Article  CAS  Google Scholar 

  • Oliver DW, Dekker TG, Snyckers FO (1991) Antiviral properties of 4-amino-(D3)-trishomocubanes. Arzneimittel-Forschung/Drug Res 41:549–552

    CAS  Google Scholar 

  • Oliver DW, Dekker TG, Snyckers FO, Fourie TG (1991b) Synthesis and Biological Activity of D3-Trishomocubyl-4-amines J Med Chem 34:851–854

    Article  PubMed  CAS  Google Scholar 

  • Oliver DW, Dekker TG, Wessels PL (1994) Stereochemistry of 4-amino-(D3)-trishomocubanes. NMR study of 3-phenyl-4-amino-(D3)-trishomocubane. Magnetic Res Chem 32:330–334

    Article  CAS  Google Scholar 

  • Oliver DW, Carpy AJM (1995) Crystallographic evidence for the stereospecific synthesis of 4-amino-(D3)-trishomocubanes: crystal structure of 3-methyl-(D3)-trishomocubane-4-amine hydrocholoride hydrate. Zeitsch für Kristall 210:861–864

    Article  CAS  Google Scholar 

  • Schwab RS, England AC Jr, Poskanzer DC, Young RR (1969) Amantadine in the treatment of Parkinson’s disease. J Am Med Assoc 208(7):1168–1170

    Article  CAS  Google Scholar 

  • Singh V, Thomas B (1998) Recent developments in general methodologies for the synthesis of linear triquinanest. Tetrahedron 54:3647–3692

    Article  CAS  Google Scholar 

  • Stamatiou G, Foscolos GB, Fytas G, Kolocouris N, Pannecouque C, Witvrouw M, Padalko E, Neyts J, De Clercq E (2003) Heterocyclic rimantadine analogues with antiviral activity. Bioorg Med Chem 11:5485–5492

    Article  PubMed  CAS  Google Scholar 

  • Underwood GR, Ramamoorthy B (1970) Chemical studies of caged compounds. II. The synthesis of pentacyclo[6.3.0.02,6.03,10.05,9]undecane: Trishomocubane. Tetrahedron Lett 11:4125–4127

    Article  Google Scholar 

  • Van der Schyf CJ, Dekker TG, Snyckers FO (1986) Pharmacological studies of two novel polycyclic derivatives of ephedrine. Arch Pharm (Weinheim) 319(5):409–415

    Article  Google Scholar 

  • Van der Schyf CJ, Liebenberg W, Bornman R, Dekker TG, Van Rooyen PH, Fourie TG, Matthee E, Snyckers FO (1989) The polycyclic calcium antagonist, NGP1–01, has an oxa rather than an aza bird-cage structure: evidence from n.m.r. spectroscopy and the X-ray crystal structure. S Afr J Chem 42:42–46

    Google Scholar 

  • Wesemann W (1983) Wirkung einer polyzyklischen Verbindungsklasse mit diamant/ihnlicher Struktur. Funkt Biol Med 2:137–145

    CAS  Google Scholar 

  • Zah J, Terre’Blanche G, Erasmus E, Malan SF (2003) Physicochemical Prediction of a Brain-Blood Distribution Profile in Polycyclic Amines. Bioorg Med Chem 11:3569–3578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The South African National Research Foundation (NRF) is thanked for financial support. Mrs. Hannelie Viviers is thanked for her most valuable assistance in the technical support of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas W. Oliver.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, D.W., Malan, S.F. Medicinal chemistry of polycyclic cage compounds in drug discovery research. Med Chem Res 17, 137–151 (2008). https://doi.org/10.1007/s00044-007-9044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-007-9044-5

Keywords

Navigation