Skip to main content
Log in

Some Intrinsic Characterizations of Besov–Triebel–Lizorkin–Morrey–Type Spaces on Lipschitz Domains

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We give Littlewood–Paley type characterizations for Besov–Triebel–Lizorkin–type spaces \(\mathscr {B}_{pq}^{s\tau },\mathscr {F}_{pq}^{s\tau }\) and Besov-Morrey spaces \(\mathcal N_{uqp}^s\) on a special Lipschitz domain \(\Omega \subset \mathbb R^n\): for a suitable sequence of Schwartz functions \((\phi _j)_{j=0}^\infty \),

$$\begin{aligned} \Vert f\Vert _{\mathscr {B}_{pq}^{s\tau }(\Omega )}&\textstyle \approx \sup _{P\text { dyadic cubes}}|P|^{-\tau }\Vert (2^{js}\phi _j*f)_{j=\log _2\ell (P)}^\infty \Vert _{\ell ^q(L^p(\Omega \cap P))};\\ \Vert f\Vert _{\mathscr {F}_{pq}^{s\tau }(\Omega )}&\textstyle \approx \sup _{P\text { dyadic cubes}}|P|^{-\tau }\Vert (2^{js}\phi _j*f)_{j=\log _2\ell (P)}^\infty \Vert _{L^p(\Omega \cap P;\ell ^q)};\\ \Vert f\Vert _{\mathcal N_{uqp}^{s}(\Omega )}&\textstyle \approx \big \Vert \big (\sup _{P\text { dyadic cubes}}|P|^{\frac{1}{u}-\frac{1}{p}}\cdot 2^{js}\Vert \phi _j*f\Vert _{L^p(\Omega \cap P)}\big )_{j=0}^\infty \big \Vert _{\ell ^q}. \end{aligned}$$

We also show that \(\Vert f\Vert _{\mathscr {B}_{pq}^{s\tau }(\Omega )}\), \(\Vert f\Vert _{\mathscr {F}_{pq}^{s\tau }(\Omega )}\) and \(\Vert f\Vert _{\mathcal N_{uqp}^{s}(\Omega )}\) have equivalent (quasi-)norms via derivatives: for \(\mathscr {X}^\bullet \in \{\mathscr {B}_{pq}^{\bullet ,\tau },\mathscr {F}_{pq}^{\bullet ,\tau },\mathcal N_{uqp}^\bullet \}\), we have \(\Vert f\Vert _{\mathscr {X}^s(\Omega )}\approx \sum _{|\alpha |\le m}\Vert \partial ^\alpha f\Vert _{\mathscr {X}^{s-m}(\Omega )}\). In particular \(\Vert f\Vert _{\mathscr {F}_{\infty q}^s(\Omega )}\approx \sum _{|\alpha |\le m}\Vert \partial ^\alpha f\Vert _{\mathscr {F}_{\infty q}^{s-m}(\Omega )}\approx \sup _{P}|P|^{-n/q}\Vert (2^{js}\phi _j*f)_{j=\log _2\ell (P)}^\infty \Vert _{\ell ^q(L^q(\Omega \cap P))}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The half space extension works on \(\mathbb {R}^n_+=\{x_n>0\}\). It has the form \(Ef(x',x_n)=\sum _ja_jf(x',-b_jx_n)\) when \(x_n<0\). In this case \(E^\alpha f(x',x_n)=\sum _ja_j(-b_j)^{\alpha _n}f(x',-b_jx_n)\) has the similar expression to E.

  2. Our notation is different from the standard one, which can be found in for example [20, Definition 2.1].

  3. Some papers may have different order of the indices. For example, in [7] this is written as \(\mathcal {N}_{upq}^s\).

  4. The notation is slightly different from the one in [12, Theorem 1.2].

  5. It can depend on the upper bound of \(\Vert \nabla \rho \Vert _{L^\infty }\), which is bounded by \(\inf \{-\frac{x_n}{|x'|}:(x',x_n)\in {\text {supp}}\phi _j\}\) where \(\phi \in \{\eta ,\theta \}\) and \(j\ge 0\).

  6. In fact we can relax the condition to \(\sum _{\nu =1}^N\chi _\nu |_{\overline{\Omega }}>c\) for some \(c>0\).

  7. Here the index of the Schwartz family start from \(j=1\). In Definition 5 we start with \(j=0\).

References

  1. Bui, H.-Q., Paluszyński, M., Taibleson, M.H.: A maximal function characterization of weighted Besov–Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119(3), 219–246 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fefferman, C., Stein, E.M.: Some maximal inequalities. Amer. J. Math. 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gonçalves, H.F., Haroske, D.D., Skrzypczak, L.: Limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces on domains and an extension operator. Annali di Matematica (2023). https://doi.org/10.1007/s10231-023-01327-w

  5. Grafakos, L.: Classical Fourier analysis. In: Sheldon, A., Kenneth, R. (eds.) Graduate Texts in Mathematics, 3rd edn. Springer, New York (2014)

  6. Haroske, D.D., Triebel, H.: Morrey smoothness spaces: a new approach (2021). arXiv preprint. arXiv:2110.10609

  7. Mazzucato, A.L.: Besov–Morrey spaces: function space theory and applications to non-linear PDE. Trans. Amer. Math. Soc. 355(4), 1297–1364 (2003)

  8. Peetre, J.: On spaces of Triebel–Lizorkin type. Ark. Mat. 13, 123–130 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  9. Haroske, D.D., Triebel, H. Morrey smoothness spaces: A new approach. Sci. China Math. (2023). https://doi.org/10.1007/s11425-021-1960-0

  10. Sickel, W.: Smoothness spaces related to Morrey spaces–a survey. I. Eurasian Math. J. 3, 110–149 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin-Morrey spaces. Math. Z. 257(4), 871–905 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shi, Z., Yao, L.: New estimates of Rychkov’s universal extension operators for Lipschitz domains and some applications. arXiv preprint arXiv:2110.14477v3 (2022). https://doi.org/10.48550/arXiv.2110.14477

  13. Sun, Q., Zhuo, C.: Extension of variable Triebel–Lizorkin–type space on domains. Bull. Malays. Math. Sci. Soc. 45(1), 201–216 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Triebel, H.: Theory of Function Spaces III, Monographs in Mathematics. Birkhäuser Verlag, Basel (2006)

  15. Triebel, H.: Function spaces and wavelets on domains, EMS Tracts in Mathematics, vol. 7. European Mathematical Society (EMS), Zürich (2008)

    Book  Google Scholar 

  16. Triebel, H.: Theory of function spaces, Modern Birkhäuser Classics, Birkhäuser/Springer Basel AG, Basel, 2010, Reprint of 1983 edition [MR0730762], Also published in 1983 by Birkhäuser Verlag [MR0781540]

  17. Triebel, H.: Local function spaces, heat and Navier–Stokes equations, EMS Tracts in Mathematics, vol. 20. European Mathematical Society (EMS), Zürich (2013)

    Book  Google Scholar 

  18. Triebel, H.: Hybrid function spaces, heat and Navier–Stokes equations, EMS Tracts in Mathematics, vol. 24. European Mathematical Society (EMS), Zurich (2014)

    Google Scholar 

  19. Triebel, H.: Theory of Function Spaces IV, Monographs in Mathematics. Springer, Cham (2020)

    MATH  Google Scholar 

  20. Tang, L., Jingshi, X.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278(7–8), 904–917 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ullrich, T.: Continuous characterizations of Besov–Lizorkin–Triebel spaces and new interpretations as coorbits. J. Funct. Spaces Appl. (2012). https://doi.org/10.1155/2012/163213

    Article  MathSciNet  MATH  Google Scholar 

  22. Suqing, W., Yang, D., Yuan, W.: Equivalent quasi-norms of Besov–Triebel–Lizorkin–type spaces via derivatives. Results Math. 72(1–2), 813–841 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Jingshi, X.: A characterization of Morrey type Besov and Triebel–Lizorkin spaces. Vietnam J. Math. 33(4), 369–379 (2005)

    MathSciNet  MATH  Google Scholar 

  24. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov Lizorkin and Triebel. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  25. Yuan, W., Sickel, W., Yang, D.: Interpolation of Morrey–Campanato and related smoothness spaces. Sci. China Math. 58(9), 1835–1908 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, D., Yuan, W.: Characterizations of Besov–type and Triebel–Lizorkin–type spaces via maximal functions and local means. Nonlinear Anal. 73(12), 3805–3820 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, D., Yuan, W.: Relations among Besov–type spaces, Triebel–Lizorkin–type spaces and generalized Carleson measure spaces. Appl. Anal. 92(3), 549–561 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhuo, C., Hovemann, M., Sickel, W.: Complex interpolation of Lizorkin–Triebel-Morrey spaces on domains. Anal. Geom. Metr. Spaces 8(1), 268–304 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhuo, C.: Complex interpolation of Besov–type spaces on domains. Z. Anal. Anwend. 40(3), 313–347 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Dorothee Haroske, Wen Yuan and Ciqiang Zhuo for their informative discussions and advice. I would also like to thank the referees for the comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liding Yao.

Additional information

Communicated by Winfried Sickel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L. Some Intrinsic Characterizations of Besov–Triebel–Lizorkin–Morrey–Type Spaces on Lipschitz Domains. J Fourier Anal Appl 29, 24 (2023). https://doi.org/10.1007/s00041-023-10001-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-023-10001-x

Keywords

Mathematics Subject Classification

Navigation