Skip to main content
Log in

The Multilinear Littlewood–Paley Operators with Minimal Regularity Conditions

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We investigate the quantitative weighted estimates for a large class of the multilinear Littlewood–Paley square operators. Our kernels satisfy the minimal regularity assumption, called \(L^r\)-Hörmander condition. We respectively establish the pointwise sparse domination for the multilinear square functions and their iterated commutators. Based on them, we obtain the strong type quantitative bounds and endpoint estimates. We recover lots of known weighted inequalities for Littlewood–Paley operators. Significantly, the approach is dyadic, quite elementary and simpler than that presented previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benea, C., Bernicot, F., Luque, T.: Sparse bilinear forms for Bochner-Riesz multipliers and applications. Trans. Lond. Math. Soc. 4(1), 110–128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernicot, F., Frey, D., Petermichl, S.: Sharp weighted norm estimates beyond Calderón-Zygmund theory. Anal. PDE 9(5), 1079–1113 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buckley, S.: Estimates for operator norms on weighted spaces and reverse Jensen inequalities. Trans. Am. Math. Soc. 340(1), 253–272 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bui, T.A., Duong, X.T.: Weighted norm inequalities for multilinear operators and applications to multilinear Fourier multipliers. Bull. Sci. Math. 137(1), 63–75 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bui, T.A., Hormozi, M.: Weighted bounds for multilinear square functions. Potential Anal. 46, 135–148 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S., Wu, H., Xue, Q.: A note on multilinear Muckenhoupt classes for multiple weights. Stud. Math. 223, 1–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Xue, Q., Yabuta, K.: On multilinear Littlewood-Paley operators. Nonlinear Anal. 115, 25–40 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, D., Pereyra, M.C., Pérez, C.: Sharp bounds for general commutators on weighted Lebesgue spaces. Trans. Am. Math. Soc. 364, 1163–1177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cladek, L., Ou, Y.: Sparse domination of Hilbert transforms along curves. arXiv:1704.07810

  10. Conde-Alonso, J., Rey, G.: A pointwise estimate for positive dyadic shifts and some applications. Math. Ann. 365, 1111–1135 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conde-Alonso, J., Culiuc, A., Di Plinio, F., Ou, Y.: A sparse domination principle for rough singular integrals. Anal. PDE 10, 1255–1284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Culiuc, A., Di Plinio, F., Ou, Y.: Domination of multilinear singular integrals by positive sparse forms. arXiv:1603.05317

  13. Damián, W., Hormozi, M., Li, K.: New bounds for bilinear Calderón-Zygmund operators and applications. Rev. Mat. Iberoam (to appear)

  14. Fefferman, C., Stein, E.M.: \(H^p\) spaces of several variables. Acta Math. 129, 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, New Jersey (2004)

    MATH  Google Scholar 

  16. Grafakos, L., Torres, R.H.: Multilinear Calderón-Zygmund theory. Adv. Math. 165, 124–164 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grafakos, L., Liu, L., Pérez, C., Torres, R.H.: The multilinear strong maximal function. J. Geom. Anal. 21, 118–149 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hänninen, T.S.: Remark on dyadic pointwise domination and median oscillation decomposition. arXiv:1502.05942v1

  19. He, S., Xue, Q., Mei, T., Yabuta, K.: Existence and boundedness of multilinear Littlewood-Paley operators on Campanato spaces. J. Math. Anal. Appl. 432, 86–102 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holmes, I., Lacey, M.T., Wick, B.D.: Commutators in the two-weight setting. Math. Ann. 367, 51–80 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hormozi, M., Li, K.: \(A_p\)-\(A_{\infty }\) estimates for general multilinear sparse operators. arXiv:1508.06105v3

  22. Hu, G., Li, D.: A Cotlar type inequality for the multilinear singular integral operators and its applications. J. Math. Anal. Appl. 290, 639–653 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hytönen, T.: The sharp weighted bound for general Calderón-Zygmund operators. Ann. Math. 175(3), 1473–1506 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hytönen, T.: The \(A_2\) Theorem: Remarks and Complements. Contemporary Mathematics, vol. 612, pp. 91–106. American Mathematical Society, Providence (2014)

  25. Hytönen, T.P., Lacey, M.T., Pérez, C.: Sharp weighted bounds for the \(q\)-variation of singular integrals. Bull. Lond. Math. Soc. 45, 529–540 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE. 6, 777–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hytönen, T., Roncal, L., Tapiola, O.: Quantitative weighted estimates for rough homogeneous singular integrals. Israel J. Math. 218, 133–164 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lacey, M.: An elementary proof of the \(A_2\) bound. Israel J. Math. 217, 181–195 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lacey, M., Spencer, S.: Sparse bounds for oscillatory and random singular integrals. N. Y. J. Math. 23, 119–131 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Lerner, A.: Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv. Math. 226, 3912–3926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lerner, A.: A simple proof of the \(A_2\) conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)

    Article  MATH  Google Scholar 

  32. Lerner, A.: On sharp aperture-weighted estimates for square functions. J. Four. Anal. Appl. 20, 784–800 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lerner, A.: On pointwise estimates involving sparse operators. N. Y. J. Math. 22, 341–349 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Lerner, A., Nazarov, F.: Intuitive dyadic calculus: the basics. arXiv:1508.05639

  35. Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory. Adv. Math. 220, 1222–1264 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lerner, A.K., Ombrosi, S., Rivera-Ríos, I.P.: On pointwise and weighted estimates for commutators of Calderón-Zygmund operators. Adv. Math. 319, 153–181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, K.: Sparse domination theorem for multilinear singular integral operators with \(L^r\)-Hörmander condition. Michigan Math. J. (to appear)

  38. Li, K., Sun, W.: Weak and strong type weighted estimates for multilinear Calderón-Zygmund operators. Adv. Math. 254, 736–771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Li, K., Moen, K., Sun, W.: The sharp weighted bound for multilinear maximal functions and Calderón-Zygmund operators. J. Four. Anal. Appl. 20, 751–765 (2014)

    Article  MATH  Google Scholar 

  40. Lorente, M., Riveros, M.S., de la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11, 497–509 (2015)

    Article  MATH  Google Scholar 

  41. Martell, J., Pérez, C., Trujillo-González, R.: Lack of natural weighted estimates for some singular integral operators. Trans. Am. Math. Soc. 357, 385–396 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. O’Neil, R.: Fractional integration in Orlicz spaces. Trans. Am. Math. Soc. 115, 300–328 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pérez, C., Rivera-Ríos, I.P.: Borderline weighted estimates for commutators of singular integrals. Israel J. Math. 217, 435–475 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Pérez, C., Pradolini, G., Torres, R.H., Trujillo-González, R.: End-point estimates for iterated commutators of multilinear singular integrals. Bull. Lond. Math. Soc. 46, 26–42 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shi, S., Xue, Q., Yabuta, K.: On the boundedness of multilinear Littlewood-Paley \(g_{\lambda }^*\) function. J. Math. Pures Appl. 101, 394–413 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Si, Z., Xue, Q., Yabuta, K.: On the bilinear square Fourier multiplier operators and related multilinear square functions. Sci. China Math. 60, 1477–1502 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  47. Stein, E.M.: Singular integrals and Differentiability Properties of Functions. Princeton Mathematical Series, vol. 30. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  48. Xue, Q., Yan, J.: On multilinear square function and its applications to multilinear Littlewood-Paley operators with non-convolution type kernels. J. Math. Anal. Appl. 422, 1342–1362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  49. Xue, Q., Peng, X., Yabuta, K.: On the theory of multilinear Littlewood-Paley \(g\)-function. J. Math. Soc. Jpn. 67, 535–559 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Yabuta, K.: On the kernel of pseudo-differential operators. Bull. Fac. Sci. Ibaraki Univ. A 18, 13–18 (1986)

    Article  MATH  Google Scholar 

  51. Zorin-Kranich, P.: Intrinsic square functions with arbitrary aperture. arXiv:1605.02936

Download references

Acknowledgements

The authors would like to thank the referee for valuable suggestions which have improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Cao.

Additional information

Communicated by Loukas Grafakos.

Appendix

Appendix

In this section, we will present some observations about \(L^p (\log L)^a\) functions, which will help us to comprehend the inverse of \(L^p (\log L)^a\) functions. Those can not be found in any other references.

Henceforth, given a Young function A, we mean that \(A^{-1}(x) = \inf \{y \in \mathbb {R}: A(y) > x\}\) for \(x \in [0,\infty ]\), where \(\inf \emptyset = \infty \).

Proposition 7.1

Let \(-\infty<a<\infty \). Let \(\Phi (x) = x(1 + \log ^+ x)^a\). Then \(\Phi ^{-1}(x)\approx x(1 + \log ^+ x)^{-a}\) on \([0,\infty ]\) if \(a\ge -1\), and on \([0,1]\cup [e^{-a-1},\infty ]\) if \(a<-1\).

Proof

Let \(\Psi (x)= x(1 + \log ^+ x)^{-a}\).

  1. (i)

    The case \(a=0\). In this case tivially \(\Phi ^{-1}(t)=\Psi (t)\).

  2. (ii)

    The case \(a>0\). For \(0\le t\le 1\) we have

    $$\begin{aligned} \Phi (\Psi (t))=t, \end{aligned}$$

    which means that

    $$\begin{aligned} \Phi ^{-1}(t)=\Psi (t)\ \text { for }0\le t\le 1. \end{aligned}$$

    For \(t>1\), there holds

    $$\begin{aligned} \Phi (\Psi (t))&=t(1+\log ^+ t)^{-a}\bigl (1+\log ^+(t(1+\log ^+ t)^{-a})\bigr )^a \\&<t(1+\log ^+ t)^{-a}\bigl (1+\log ^+t\bigr )^a=t, \end{aligned}$$

    which combined with the increasingness of \(\Phi (t)\) yields that

    $$\begin{aligned} \Phi ^{-1}(t)\ge \Psi (t)\ \text { for } 1<t<\infty . \end{aligned}$$

    Next, let \(A\ge \max \{2^a,(2a)^a\}\). Then

    $$\begin{aligned} \Phi (A\Psi (t)) =At(1+\log ^+ t)^{-a}\bigl (1+\log ^+(At(1+\log ^+ t)^{-a})\bigr )^a. \end{aligned}$$
    (7.1)

    In the case \(0<a\le \frac{1}{2}\), we see that

    $$\begin{aligned} (1+\log ^+ t)^{a}\le (1+\log ^+ t)^{1/2}\le \sqrt{t}. \end{aligned}$$

    This and (7.1) yield that

    $$\begin{aligned} \Phi (A\Psi (t))&>At(1+\log ^+ t)^{-a}\bigl (1+\log ^+\sqrt{t})\bigr )^a \\&\ge \frac{A}{2^a}t(1+\log ^+ t)^{-a}\bigl (1+\log ^+ t)\bigr )^a =\frac{A}{2^a} t>t. \end{aligned}$$

    Hence, we deduce that

    $$\begin{aligned} \Phi ^{-1}(t)\le A\Psi (t)\ \text { for }1< t<\infty . \end{aligned}$$
    (7.2)

    In the case \(a>\frac{1}{2}\), let

    $$\begin{aligned} f(t)=A^{\frac{1}{a}}t^{\frac{1}{2a}}-1-\log t. \end{aligned}$$

    Then \(f(1)=A^{\frac{1}{a}}-1>0\), and noting \(A\ge (2a)^a\), we get

    $$\begin{aligned} f'(t)=\frac{A^{\frac{1}{a}}}{2a}t^{\frac{1}{2a}-1}-\frac{1}{t} =\frac{A^{\frac{1}{a}}}{2at}\Bigl (t^{\frac{1}{2a}}-\frac{2a}{A^{\frac{1}{a}}} \Bigr )>0\ \text { for }t>1. \end{aligned}$$

    Hence we have

    $$\begin{aligned} A\sqrt{t}> (1+\log ^+t)^a\ \text { for }t>1, \end{aligned}$$

    and so combinig (7.1) we get

    $$\begin{aligned} \Phi (A\Psi (t))>At(1+\log ^+ t)^{-a}\bigl (1+\log ^+\sqrt{t})\bigr )^a. \end{aligned}$$

    So, as in the case \(0<a\le \frac{1}{2}\), we have (7.2). For \(t=\infty \) we have trivially \(\Phi ^{-1}(\infty )=\Psi (\infty )=\infty \). All together we obtain

    $$\begin{aligned} \Psi (t)\le \Phi ^{-1}(t)\le A\Psi (t) \ \text { for }0\le t\le \infty . \end{aligned}$$
  3. (iii)

    The case \(a<0\).

    On [0, 1], \(\Phi (t)=1\), and so the conclusion is clear. On \((1,\infty )\) we have

    $$\begin{aligned} \Phi (\Psi (t))&=t\frac{(1+\log ^+ t)^{-a}}{\bigl (1+\log ^+(t(1+\log ^+ t)^{-a})\bigr )^{-a}} \\&<t(1+\log ^+ t)^{-a}\bigl (1+\log ^+t\bigr )^a=t. \end{aligned}$$

    Since \(\Phi (t)\) is increasing on \([e^{-a-1},\infty ]\), we see that

    $$\begin{aligned} \Phi ^{-1}(t)\ge \Psi (t) \ \text { on } [e^{-a-1},\infty ). \end{aligned}$$
    (7.3)

    For \(A\ge (-2a)^{-a}\)

    $$\begin{aligned} \Phi (A\Psi (t))=At\frac{(1+\log ^+ t)^{-a}}{\bigl (1+\log ^+(At(1+\log ^+ t)^{-a})\bigr )^{-a}}. \end{aligned}$$
    (7.4)

    In (ii), we showed that if \(A\ge (-2a)^{-a}\)

    $$\begin{aligned} A\sqrt{t}> (1+\log ^+t)^{-a}\ \text { for }t>1. \end{aligned}$$

    This combined with (7.4) gives

    $$\begin{aligned} \Phi (A\Psi (t))=At\frac{(1+\log ^+ t)^{-a}}{\bigl (1+\log ^+(A^2t^{3/2})\bigr )^{-a}} \le \frac{A}{\bigl (\frac{3}{2}(1+2\log A)\bigr )^{-a}}\,t. \end{aligned}$$

    So, if \(A\ge (-3a)^{-a}\), we have \(\frac{A}{\bigl (\frac{3}{2}(1+2\log A)\bigr )^{-a}}\ge 1\), and

    $$\begin{aligned} \Phi (A\Psi (t))\ge t\ \text { for }t>1. \end{aligned}$$

    Thus, since \(\Phi (t)\) is increasing on \([e^{-a-1},\infty ]\), we get

    $$\begin{aligned} \Phi ^{-1}(t)\le A\Psi (t) \ \text { for }t\ge e^{-a-1}, \end{aligned}$$
    (7.5)

    if \(A\ge \max \{(-2a)^{-a},\,(-3a)^{-a}\}\). By (7.3) and (7.5), we obtain

    $$\begin{aligned} \Psi (t)\le \Phi ^{-1}(t)\le A\Psi (t) \ \text { for }t\ge e^{-a-1}. \end{aligned}$$

    This completes the proof of Proposition 7.1. \(\square \)

Remark 7.2

Let \(\Phi (t)=t(1+\log ^+ t)^a\) and \(a\in \mathbb R\). If \(a\ge 0\), \(\Phi (t)\) is increasing and convex on \([0,\infty ]\).

If \(-1\le a<0\), \(\Phi (t)\) is increasing on \([0,\infty ]\). If \(a<-1\), then \(\Phi (t)\) is increasing on \([0,1]\cup [e^{-a-1},\infty ]\), and is decreasing on \([1,e^{-a-1}]\). Moreover, for \(a<0\), \(\Phi ''(t)=0\) on (0, 1), \(>0\) on \((1,e^{-a})\) and \(<0\) on \((e^{-a},\infty )\).

Proposition 7.3

Let \(-\infty<a<\infty \) and \(p>0\). Let \(\Phi _p(x) = x^p(1 + \log ^+ x)^a\) and \(\tilde{\Phi }_p(x) = x^p(1 + \log ^+ x^p)^a\). Then there exist \(A_1, A_2\ge 1\) such that

$$\begin{aligned} {\Phi }_p(x) \le \tilde{\Phi }_p(A_1x), \ 0\le x<\infty , \end{aligned}$$

and

$$\begin{aligned} \tilde{\Phi }_p(x) \le {\Phi }_p(A_2x), \ 0\le x<\infty . \end{aligned}$$

Proof

If \(x\in [0,1]\) or \(a=0\), \(\Phi _p(x)=\tilde{\Phi }_p(x)=x\), and so we have only to treat the case \(x>1\) and \(a\ne 0\). We consider the following four cases: \(p\ge 1\) and \(a>0\), \(p\ge 1\) and \(a<0\), \(0<p<1\) and \(a>0\), and \(0<p<1\) and \(a<0\).

Case 1\(p\ge 1\)and\(a>0\). Clearly \(\Phi _p(x)\le \tilde{\Phi }_p(x)\). And

$$\begin{aligned} \tilde{\Phi }_p(x)&=x^p(1 + p\log x)^a \\&\le p^ax^a(1 + \log x)^a\le (p^{a/p}x)^a(1 + \log (p^{a/p}x))^a ={\Phi }_p(p^{a/p}x). \end{aligned}$$

Case 2\(p\ge 1\)and\(a<0\). Clearly \(\Phi _p(x)\ge \tilde{\Phi }_p(x)\). And

$$\begin{aligned} {\Phi }_p(x)&= \frac{(pA)^{-a}x^p}{(pA + pA\log x)^{-a}} \le \frac{(pA)^{-a}x^p}{(pA + p\log x)^{-a}} \\&\le \frac{(pA)^{-a}x^p}{(pA -p\log (pA)^{-a/p}+ p\log (pA)^{-a/p}x)^{-a}} \\&=\frac{(pA)^{-a}x^p}{(pA -p\log (pA)^{-a/p}+ \log ((pA)^{-a/p}x)^p)^{-a}}. \end{aligned}$$

There exists \(A_0>0\) such that

$$\begin{aligned} pA_0 -p\log (pA_0)^{-a/p}\ge 1. \end{aligned}$$

In this case \(pA_0\ge 1\). Hence, letting \(A_1=(pA_0)^{-a/p}>1\) we have

$$\begin{aligned} {\Phi }_p(x)\le \tilde{\Phi }_p(A_1x). \end{aligned}$$

Case 3\(0<p<1\)and\(a>0\). It is easy to see that \(\Phi _p(x)\ge \tilde{\Phi }_p(x)\). And

$$\begin{aligned} {\Phi }_p(x)&=x^p(1 + \log x)^a=\Big (\frac{1}{p}\Big )^{a}x^p(p + p\log x)^a\\&\le \Big (\frac{1}{p}\Big )^{a}x^p\Bigg (p +p \log \bigg (\Big (\frac{1}{p}\Big )^{a/p} x\bigg )\Bigg )^a \\&\le ((\frac{1}{p})^{a/p}x)^p\bigg (1 + \log \Big (\Big (\frac{1}{p}\Big )^{a/p} x\Big )^p\bigg )^a ={\tilde{\Phi }}_p\Bigg (\Big (\frac{1}{p}\Big )^{a/p}x\Bigg ). \end{aligned}$$

Case 4\(0<p<1\)and\(a<0\). There holds

$$\begin{aligned} \tilde{\Phi }_p(x)=\frac{x^p}{(1 + p\log ^+ x)^{-a}} \ge \frac{x^p}{(1 + \log ^+ x)^{-a}}= \Phi _p(x). \end{aligned}$$

And for \(A>1\)

$$\begin{aligned} \tilde{\Phi }_p(x)&= \frac{x^p}{(1 + p\log ^+ x)^{-a}} \\&\le \frac{(\frac{1}{p})^{-a}x^p}{(1 + \log x)^{-a}} =\frac{(\frac{A}{p})^{-a}x^p}{(A + A\log x)^{-a}} \\&\le \frac{(\frac{A}{p})^{-a}x^p}{(A + \log x)^{-a}} =\frac{((\frac{A}{p})^{-a/p}x)^p}{(A+\frac{a}{p}\log \frac{A}{p} + \log ((\frac{A}{p})^{-a/p}x))^{-a}}. \end{aligned}$$

There exists \(A_4>1\) such that

$$\begin{aligned} A_4+\frac{a}{p}\log \frac{A_4}{p}\ge 1. \end{aligned}$$

In this case \(A_4/p\ge 1\). Hence, letting \(A_2=(A_4/p)^{-a/p}>1\) we have

$$\begin{aligned} \tilde{\Phi }_p(x)\le {\Phi }_p(A_2x). \end{aligned}$$

Lemma 7.4

Let \(a_1\ge 0\) and let \(\Phi _1\), \(\Phi _2\) be nonnegative, increasing and continuous functions on \([a_1,\infty )\). If for some \(A_1\ge 1\)

$$\begin{aligned} \Phi _1(t)\le \Phi _2(A_1 t),\ a_1\le t<\infty , \end{aligned}$$
(7.6)

then it holds

$$\begin{aligned} \Phi _2^{-1}(t)\le A_1\Phi _1^{-1}(t)\ \text { for }\max \{\Phi _1(a_1), \Phi _2(a_1)\}\le t<\infty . \end{aligned}$$
(7.7)

Proof

From (7.6) we get for \(t\ge \Phi _1(a_1)\)

$$\begin{aligned} \Phi _2(A_1\Phi _1^{-1}(t))\ge \Phi _1(\Phi _1^{-1}(t))=t, \end{aligned}$$

which implies that

$$\begin{aligned} A_1\Phi _1^{-1}(t)\ge \Phi _2^{-1}(t)\ \text { for }t\ge \max \{\Phi _1(a_1), \Phi _2(a_1)\}. \end{aligned}$$

Proposition 7.5

Let \(-\infty<a<\infty \) and \(p>1\). Let \(\Phi _p(x) = x^p(1 + \log ^+ x)^a\). Then \(\Phi _p^{-1}(x)\approx x^{1/p}(1 + \log ^+ x)^{-a/p}\) on \([0,\infty ]\) if \(a\ge -1\), and on \([0,1]\cup [-ae^{-a-1},\infty ]\) if \(a<-1\).

Proof

One can easily check that \(\Phi _p(t)\) is increasing on \([0,\infty )\) if \(a\ge -p\), and is increasing on \([0,1]\cup [e^{-a/p -1},\,\infty )\). Let \(\tilde{\Phi }_p(t)=t^p(1 + \log ^+ t^p)^a\). We know that \(\tilde{\Phi }_p(t)\) is increasing on \([0,\infty )\) if \(a\ge -1\), and is increasing on \([0,1]\cup [e^{-(a+1)/p},\,\infty )\). Hence, if \(a\ge 1\), by Proposition 7.3 and Lemma 7.4 we see that \(\Phi _p^{-1}(t)\approx \tilde{\Phi }_p^{-1}(t)\) on \([0, \infty )\).

Here we see easily that \(\tilde{\Phi }_p^{-1}=(\Phi ^{-1}(t))^{1/p}\), where \(\Phi (t)=t(1 + \log ^+ t)^a\). Hence by Proposition 7.1 we obtain

$$\begin{aligned} \Phi _p^{-1}(t)\approx t^{1/p}(1+\log ^+ t)^{-a/p}\ \text { on }[0,\infty ]. \end{aligned}$$

In the case \(a<-1\), on [0, 1] it is trivial. Next, we observe that \(e^{-a/p -1}<e^{-(a+1)/p}\) and \(\Phi _p(e^{-a/p -1})=-\frac{a}{p} e^{-\frac{a}{p} -1}<-ae^{-(a+1)} =\tilde{\Phi }_p(e^{-(a+1)/p})\). By the proof of Proposition 7.3, we know that \(\tilde{\Phi }_p(t)\le \Phi _p(t)\le \tilde{\Phi }_p(At)\)\((0\le t<\infty )\), for some \(A>1\). So, by Lemma 7.4 we see that \(\Phi _p^{-1}(t)\approx \tilde{\Phi }_p^{-1}(t)\) on \([-ae^{-(a+1)},\,\infty )\).

Remark 7.6

In genera, the following does not hold: Let \(a_1\ge 0\) and let \(\Phi _1\), \(\Phi _2\) be nonnegative, increasing and continuous functions on \([a_1,\infty )\).

Then, from \(\Phi _1(t)\approx \Phi _2(t)\) it follows \(\Phi _1^{-1}(t)\approx \Phi _2^{-1}(t)\). In fact, let \(\Phi _1(t)=\log (1+t)\) and \(\Phi _2(t)=\log (1+t)^2\). Then \(\Phi _1(t)\approx \Phi _2(t)\), but \(\Phi _1^{-1}(t)=e^t -1\) and \(\Phi _2^{-1}(t)=e^{t/2} -1\). And there exists no \(C>0\) such that \(\Phi _1^{-1}(t)\le C\Phi _2^{-1}(t)\).

However, if we suppose the convexty in addition, then we get a good result.

Lemma 7.7

Let \(\Phi _1\), \(\Phi _2\) be nonnegative, increasing and convex functions on [0, B]. If for some \(A_1, A_2\ge 1\)

$$\begin{aligned} \frac{\Phi _2(t)}{A_1}\le \Phi _1(t)\le A_2 \Phi _2(t),\ 0\le t<\infty , \end{aligned}$$

then it holds

$$\begin{aligned} \Phi _1(t)\le \Phi _2(A_2t)\ \text { and } \Phi _2(t)\le \Phi _1(A_1t) \ \ 0\le t<\infty . \end{aligned}$$

Proof

Since \(\Phi _2(0)=0\) and \(\Phi _2\) is convex on [0, B], we have

$$\begin{aligned} \frac{\Phi _2(t)}{t}\le \frac{\Phi _2(A_2t)}{A_2t},\ 0\le t<\infty , \end{aligned}$$

and hence \(A_2\Phi _2(t)\le \Phi _2(A_2t)\), \(0\le t<\infty \). Thus we get

$$\begin{aligned} \Phi _1(t)\le \Phi _2(A_2t)\ \ 0\le t<\infty . \end{aligned}$$

Similarly we have

$$\begin{aligned} \Phi _2(t)\le \Phi _1(A_1t)\ \ 0\le t<\infty . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Yabuta, K. The Multilinear Littlewood–Paley Operators with Minimal Regularity Conditions. J Fourier Anal Appl 25, 1203–1247 (2019). https://doi.org/10.1007/s00041-018-9613-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-9613-7

Keywords

Mathematics Subject Classification

Navigation