Skip to main content
Log in

NLS in the Modulation Space \(M_{2,q}({\mathbb {R}})\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We show the existence of weak solutions in the extended sense of the Cauchy problem for the cubic nonlinear Schrödinger equation in the modulation space \(M_{2,q}^{s}({\mathbb {R}})\), \(1\le q\le 2\) and \(s\ge 0.\) In addition, for either \(s\ge 0\) and \(1\le q\le \frac{3}{2}\) or \(\frac{3}{2}<q\le 2\) and \(s>\frac{2}{3}-\frac{1}{q}\) we show that the Cauchy problem is unconditionally wellposed in \(M_{2,q}^{s}({{\mathbb {R}}}).\) It is done with the use of the differentiation by parts technique which had been previously used in the periodic setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babin, A., Ilyin, A., Titi, E.: On the regularization mechanism for the periodic Korteweg-de Vries equation. Commun. Pure Appl. Math. 64(5), 591–648 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bényi, A., Gröchenig, K., Okoudjou, K.A., Rogers, L.G.: Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal. 246, 366–384 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bényi, A., Okoudjou, K.A.: Local well-posedness of nonlinear dispersive equations on modulation spaces. Bull. Lond. Math. Soc. 41(3), 549–558 (2009). ISSN 0024-6093

    Article  MathSciNet  MATH  Google Scholar 

  4. Christ, M.: Power Series Solution of a Nonlinear Schrödinger Equation. Mathematical Aspects of Nonlinear Dispersive Equations, Annals of Mathematical Studies, vol. 163, pp. 131–155. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  5. Christ, M.: Nonuniqueness of weak solutions of the nonlinear Schrödinger equation. arXiv:math/0503366

  6. Chung, J., Guo, Z., Kwon, S., Oh, T.: Normal form approach to global wellposedness of the quadratic derivative nonlinear Schrödinger equation on the circle. Ann. Inst. H. Poincaré Anal. Non Linéaire. 34(5), 1273–1297 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feichtinger, H.G.: Modulation spaces on locally compact Abelian groups. Technical Report, University of Vienna, 1983, In: Proceedings of the International Conference on Wavelet and Applications, 2002, New Delhi Allied Publishers, India, pp. 99–140 (2003)

  8. Gubinelli, M.: Rough solutions for the periodic Korteweg–de Vries equation. Commun. Pure Appl. Anal. 11(2), 709–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, S.: On the \(1\)D cubic nonlinear Schrödinger equation in an almost critical space. J. Fourier Anal. Appl. 23(1), 91–124 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, Z., Kwon, S., Oh, T.: Poincaré–Dulac normal form reduction for unconditional well-posedness of the periodic cubic NLS. Commun. Math. Phys. 322(1), 19–48 (2013)

    Article  MATH  Google Scholar 

  11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 5th edn, p. xvi+426. The Clarendon Press, New York (1979)

    Google Scholar 

  12. Kato, T.: On nonlinear Schrödinger equations. II. \(H^{s}\)-solutions and unconditional well-posedness. J. Anal. Math. 67, 281–306 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kwon, S., Oh, T.: On unconditional well-posedness of modified KdV. Int. Math. Res. Not. IMRN 15, 3509–3534 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Oh, T., Wang, Y.: Global wellposedness of the periodic cubic fourth order NLS in negative Sobolev spaces. Forum Math. Sigma 6, e5, 80 (2018)

    Article  MATH  Google Scholar 

  15. Oh, T., Sosoe, P., Tzvetkov, N.: An optimal regularity result on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation. arXiv:1707.01666

  16. Shatah, J.: Normal forms and quadratic nonlinear Klein–Gordon equations. Commun. Pure Appl. Math. 38, 685–696 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsutsumi, Y.: \(L^{2}\) solutions for nonlinear Schrödinger equations and nonlinear groups. Funkc. Ekvac. 30, 115–125 (1987)

    MATH  Google Scholar 

  18. Wang, B.X., Hudzik, H.: The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 232, 36–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yoon, H.: Normal Form Approach to Well-posedness of Nonlinear Dispersive Partial Differential Equations. Ph.D. thesis, Korea Advanced Institute of Science and Technology (2017)

Download references

Acknowledgements

The author gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173. He would also like to thank Peer Kunstmann from KIT for his helpful comments and fruitful discussions. Finally, he would like to thank the referees of the paper for their constructive criticism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pattakos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pattakos, N. NLS in the Modulation Space \(M_{2,q}({\mathbb {R}})\). J Fourier Anal Appl 25, 1447–1486 (2019). https://doi.org/10.1007/s00041-018-09655-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-018-09655-9

Keywords

Mathematics Subject Classification

Navigation