Skip to main content
Log in

An Uncertainty Principle of Paley and Wiener on Euclidean Motion Group

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

A classical result due to Paley and Wiener characterizes the existence of a non-zero function in \(L^2(\mathbb {R}),\) supported on a half line, in terms of the decay of its Fourier transform. In this paper we prove an analogue of this result for compactly supported continuous functions on the Euclidean motion group M(n). We also relate this result to a unique continuation property of solutions to the initial value problem for time-dependent Schrödinger equation on M(n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Saïd, S., Thangavelu, S., Dogga, V.N.: Uniqueness of solutions to Schrödinger equations on H-type groups. J. Aust. Math. Soc. 95(3), 297–314 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Burckel, R.B.: An Introduction to Classical Complex Analysis, Pure and Applied Mathematics, vol. 82. Academic [Harcourt Brace Jovanovich, Publishers], New York (1979)

  3. Chanillo, S.: Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups. Proc. Indian Acad. Sci. Math. Sci. 117(3), 325–331 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Conway, J.B.: Functions of One Complex Variable II, Graduate Texts in Mathematics, vol. 159. Springer, New York (1995)

  5. Escauriaza, L., Kenig, C.E., Ponce, G., Vega, L.: Uniqueness properties of solutions to Schrödinger equations. Bull. Am. Math. Soc. (N.S.) 49(3), 415–442 (2012)

    Article  MATH  Google Scholar 

  6. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–238 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gangolli, R., Varadarajan, V.S.: Harmonic Analysis of Spherical Functions on Real Reductive Groups, Results in Mathematics and Related Areas, 101, vol. 101. Springer, Berlin (1988)

    MATH  Google Scholar 

  8. Gross, K.I., Kunze, R.A.: Fourier Decompositions of Certain Representations, Symmetric Spaces (Short Courses, Washington University, St. Louis, MO, 1969–1970). Pure and Applied Mathematics, vol. 8, pp. 119–139. Dekker, New York (1972)

  9. Hall, B.C.: The Segal–Bargmann “coherent” state transform for compact Lie groups. J. Funct. Anal. 122(1), 103–151 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hardy, G.H.: A theorem concerning Fourier transforms. J. Lond. Math. Soc. 8(3), 227–231 (1933)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helgason, S.: The Radon Transform. Progress in Mathematics, vol. 5. Birkhäuser Boston, Inc., Boston (1999)

    Book  MATH  Google Scholar 

  12. Helgason, S.: Groups and Geometric Analysis, Integral Geometry, Invariant Differential Operators, and Spherical Functions. Mathematical Surveys and Monographs, vol. 83. American Mathematical Society, Providence (2000)

    MATH  Google Scholar 

  13. Hirschman, I.I.: On the behaviour of Fourier transforms at infinity and on quasi-analytic classes of functions. Am. J. Math. 72, 200–213 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hulanicki, A.: On \(L^p\)-spectra of the Laplacian on a Lie group with polynomial growth. Proc. Am. Math. Soc. 44, 482–484 (1974)

    MATH  MathSciNet  Google Scholar 

  15. Ingham, A.E.: A note on Fourier transforms. J. Lond. Math. Soc. 9(1), 29–32 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kenig, C.E., Ponce, G., Vega, L.: A theorem of Paley–Wiener type for Schrödinger evolutions. Ann. Sci. Ec. Norm. Super. (4) 47(3), 539–557 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  17. Knapp, A.: Representation Theory of Semisimple Groups, an Overview Based on Examples. Princeton Mathematical Series, vol. 36. Princeton University Press, Princeton (1986)

    Book  MATH  Google Scholar 

  18. Koosis, P.: The Logarithmic Integral I (Corrected reprint of the 1988 original). Cambridge Studies in Advanced Mathematics, vol. 12. Cambridge University Press, Cambridge (1998)

  19. Levinson, N.: Gap and Density Theorems. American Mathematical Society Colloquium Publications, vol. 26. American Mathematical Society, New York (1940)

    Google Scholar 

  20. Levinson, N.: On a class of non-vanishing functions. Proc. Lond. Math. Soc. S2–41(5), 393 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ludwig, J., Müller, D.: Uniqueness of solutions to Schrödinger equations on 2-step nilpotent Lie groups. Proc. Am. Math. Soc. 142(6), 2101–2118 (2014)

    Article  MATH  Google Scholar 

  22. Morgan, G.W.: A note on Fourier transforms. J. Lond. Math. Soc. 9(3), 187–192 (1934)

    Article  MATH  MathSciNet  Google Scholar 

  23. Paley, R.E.A.C., Wiener, N.: Notes on the theory and application of Fourier transforms. I, II. Trans. Am. Math. Soc. 35(2), 348–355 (1933)

    MATH  MathSciNet  Google Scholar 

  24. Paley, R.E.A.C., Wiener, N.: Fourier Transforms in the Complex Domain (Reprint of the 1934 original). American Mathematical Society Colloquium Publications, vol. 19. American Mathematical Society, Providence (1987)

  25. Pasquale, A., Sundari, M.: Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type. Ann. Inst. Fourier (Grenoble) 62(3), 859–886 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rauch, J.: Partial Differential Equations. Graduate Texts in Mathematics, vol. 128. Springer, New York (1991)

    Google Scholar 

  27. Rudin, W.: Real and Complex Analysis. McGraw-Hill Book Co., New York (1987)

    MATH  Google Scholar 

  28. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York (1991)

    Google Scholar 

  29. Schmüdgen, K.: Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics, vol. 265. Springer, Dordrecht (2012)

    Book  MATH  Google Scholar 

  30. Stein, E.M., Shakarchi, R.: Complex Analysis. Princeton Lectures in Analysis. II. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  31. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton Mathematical Series, No. 32. Princeton University Press, Princeton (1971)

    Google Scholar 

  32. Sundari, M.: Hardy’s theorem for the \(n\)-dimensional Euclidean motion group. Proc. Am. Math. Soc. 126(4), 1199–1204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Taylor, J.C.: The Iwasawa Decomposition and the Limiting Behaviour of Brownian Motion on a Symmetric Space of Noncompact Type. Geometry of Random Motion (Ithaca, NY, 1987). Contemporary Mathematics, vol. 73, pp. 303–332. American Mathematical Society, Providence (1988)

  34. Thangavelu, S.: An Introduction to the Uncertainty Principle. Hardy’s Theorem on Lie Groups, Progress in Mathematics, vol. 217. Birkhäuser Boston, Inc., Boston (2004)

Download references

Acknowledgments

We would like to thank Swagato K. Ray for suggesting this problem and for the many useful discussions during the course of this work. We are grateful to the anonymous referees whose valuable suggestions helped to improve the exposition. The second author was supported by INSPIRE Faculty Award from Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suparna Sen.

Additional information

Communicated by Hartmut Führ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhowmik, M., Sen, S. An Uncertainty Principle of Paley and Wiener on Euclidean Motion Group. J Fourier Anal Appl 23, 1445–1464 (2017). https://doi.org/10.1007/s00041-016-9510-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-016-9510-x

Keywords

Mathematics Subject Classification

Navigation