Skip to main content
Log in

On the Convolution Powers of Complex Functions on \(\mathbb {Z}\)

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The local limit theorem describes the behavior of the convolution powers of a probability distribution supported on \(\mathbb {Z}\). In this work, we explore the role played by positivity in this classical result and study the convolution powers of the general class of complex valued functions finitely supported on \(\mathbb {Z}\). This is discussed as de Forest’s problem in the literature and was studied by Schoenberg and Greville. Extending these earlier works and using techniques of Fourier analysis, we establish asymptotic bounds for the sup-norm of the convolution powers and prove extended local limit theorems pertaining to this entire class. As the heat kernel is the attractor of probability distributions on \(\mathbb {Z}\), we show that the convolution powers of the general class are similarly attracted to a certain class of analytic functions which includes the Airy function and the heat kernel evaluated at purely imaginary time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bakhoom, N.G.: Expansions of the function \(F_k(x)=\int _0^{\infty }e^{-u^k+xu}\, du\). Proc. Lond. Math. Soc. 35(2), 83–100 (1933)

    Article  MathSciNet  Google Scholar 

  2. Barbatis, G., Davies, E.B.: Sharp bounds on heat kernels of higher order uniformly elliptic operators. J. Oper. Theory 36, 197–198 (1995)

    MathSciNet  Google Scholar 

  3. Brenner, P., Thomée, V., Wahlbin, L.: Besov Spaces and Applications to Difference Methods for Initial Value Problems. Springer, Berlin (1975)

    MATH  Google Scholar 

  4. Burwell, W.R.: Asymptotic expansions of generalized hypergeometric functions. Proc. Lond. Math. Soc. 22(2), 57–72 (1924)

    Article  MathSciNet  Google Scholar 

  5. Davies, E.B.: Uniformly elliptic operators with measurable coefficients. J. Funct. Anal. 132, 141–169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaconis, P., Saloff-Coste, L.: Convolution powers of complex functions on Z. Math. Nachr. 287(10), 1106–1130 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dungey, N.: Higher order operators and Gaussian bounds on Lie groups of polynomial growth. J. Oper. Theory 46(1), 45–61 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Eidelman, S.D.: Parabolic Systems. North-Holland Publishg Company and Wolters-Nordhoff Publishing, Groningen (1969)

    Google Scholar 

  9. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    MATH  Google Scholar 

  10. Greville, T.N.E.: On stability of linear smoothing formulas. SIAM J. Numer. Anal. 3(1), 157–170 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E. Some problems of “Partitio Numerorum”: I. A new solution of Waring’s problem. Ges. Wiss. Göttingen., 33–54 (1920)

  12. Hersh, R.: A class of “Central Limit Theorems” for convolution products of generalized functions. Trans. Am. Math. Soc. 140, 71–85 (1969)

    MathSciNet  MATH  Google Scholar 

  13. Hochberg, K.J.: A signed measure on path space related to Wiener measure. Ann. Probab. 6(3), 433–458 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hochberg, K.J.: Limit theorem for signed distributions. Proc. Am. Math. Soc. 79(2), 298–302 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hochberg, K., Orsingher, E.: Composition of stochastic processes governed by higher-order parabolic and hyperbolic equations. J. Theor. Probab. 9(2), 511–532 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krylov, V.Y.: Some properties of the distributions corresponding to the equation \(\partial u/\partial t=(-1)^{q+1}\partial ^{2q}u/\partial x^{2q}\). Soviet Math. Dok. 1, 760–763 (1960)

    MATH  Google Scholar 

  17. Lachal, A.: First hitting time and place, monopoles and multipoles for pseudo-processes driven by the equation \(\frac{\partial }{\partial t}=\pm \frac{\partial ^N}{\partial x^N}\). Electron. J. Probab. 12(29), 300–353 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Lachal, A.: A survey on the pseudo-process driven by the high-order heat-type equation \(\frac{\partial }{\partial t}=\pm \frac{\partial ^N}{\partial x^N}\) concerning the hitting and sojourn times. Methodol. Comput. Appl. Probab. 14(3), 549–566 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lawler, G., Limic, V.: Random Walk: A Modern Introduction. Cambridge University Press, New York (2010)

    Book  Google Scholar 

  20. Levin, D., Lyons, T.: A signed measure on rough paths associated to a PDE of high order: results and conjectures. Rev. Mat. Iberoam. 25(3), 971–994 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Nishioka, K.: Monopoles and dipoles in biharmonic pseudo process. Proc. Jpn. Acad. Ser. A Math. Sci. 72(3), 47–50 (1996)

    Article  MathSciNet  Google Scholar 

  22. Robinson, D.W.: Elliptic Operators and Lie Groups. Oxford University Press, Oxford (1991)

    MATH  Google Scholar 

  23. Robinson, D.W.: Elliptic differential operators on Lie groups. J. Func. Anal. 97, 373–402 (1991)

    Article  MATH  Google Scholar 

  24. Sato, S.: An approach to the biharmonic pseudo process by a random walk. J. Math. Kyoto. Univ. 42(3), 403–422 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Schoenberg, I.J.: On smoothing operations and their generalized functions. Bull. Am. Math. Soc. 59, 229–230 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  26. Spitzer, F.: Principle of Random Walk, 2nd edn. Springer, New York (1976)

    Book  Google Scholar 

  27. Thomée, V.: Stability of difference schemes in the maximum-norm. J. Differ. Equ. 1, 273–292 (1965)

    Article  MATH  Google Scholar 

  28. Thomée, V.: Stability theory for partial difference operators. SIAM Rev. 11, 152–195 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhukov, A.I.: A limit theorem for difference operators. J. Uspekhi Math. Nauk. 14(3), 129–136 (1959)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for many useful suggestions and comments. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-0707428 and by the National Science Foundation under Grant No. DMS-1004771.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evan Randles.

Additional information

Communicated by David Walnut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Randles, E., Saloff-Coste, L. On the Convolution Powers of Complex Functions on \(\mathbb {Z}\) . J Fourier Anal Appl 21, 754–798 (2015). https://doi.org/10.1007/s00041-015-9386-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-015-9386-1

Keywords

Mathematics Subject Classification

Navigation