Skip to main content
Log in

On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The characteristic functional is the infinite-dimensional generalization of the Fourier transform for measures on function spaces. It characterizes the statistical law of the associated stochastic process in the same way as a characteristic function specifies the probability distribution of its corresponding random variable. Our goal in this work is to lay the foundations of the innovation model, a (possibly) non-Gaussian probabilistic model for sparse signals. This is achieved by using the characteristic functional to specify sparse stochastic processes that are defined as linear transformations of general continuous-domain white Lévy noises (also called innovation processes). We prove the existence of a broad class of sparse processes by using the Minlos–Bochner theorem. This requires a careful study of the regularity properties, especially the \(L^p\)-boundedness, of the characteristic functional of the innovations. We are especially interested in the functionals that are only defined for \(p<1\) since they appear to be associated with the sparser kind of processes. Finally, we apply our main theorem of existence to two specific subclasses of processes with specific invariance properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alpay, D., Jorgensen, P.E.T.: Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33(7–9), 708–735 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amini, A., Kamilov, U.S., Bostan, E., Unser, M.: Bayesian estimation for continuous-time sparse stochastic processes. IEEE Trans. Signal Process. 61(4), 907–920 (2013)

    Article  MathSciNet  Google Scholar 

  3. Anh, V.V., Ruiz-Medina, M.D., Angulo, J.M.: Covariance factorisation and abstract representation of generalised random fields. Bull. Aust. Math. Soc. 62(02), 319–334 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Amini, A., Unser, M., Marvasti, F.: Compressibility of deterministic and random infinite sequences. IEEE Trans. Signal Process. 59(11), 5193–5201 (November 2011)

  5. Biermé, H., Estrade, A., Kaj, I.: Self-similar random fields and rescaled random balls models. J. Theor. Probab. 23(4), 1110–1141 (2010)

    Article  MATH  Google Scholar 

  6. Bostan, E., Fageot, J., Kamilov, U.S., Unser., M.: Map estimators for self-similar sparse stochastic models. In: Proceedings of the Tenth International Workshop on Sampling Theory and Applications (SampTA’13), Bremen, Germany, (2013)

  7. Bostan, E., Kamilov, U.S., Nilchian, M., Unser, M.: Sparse stochastic processes and discretization of linear inverse problems. IEEE Trans. Image Process. 22(7), 2699–2710 (2013)

    Article  MathSciNet  Google Scholar 

  8. Bostan, E., Kamilov, U.S., Unser, M.: Reconstruction of biomedical images and sparse stochastic modeling. In: Proceedings of the Ninth IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI’12), pp. 880–883, Barcelona, Spain, May 2–5,( 2012)

  9. Bony, J.-M.: Cours d’analyse–Théorie des distributions et analyse de Fourier. Les éditions de l’Ecole Polytechnique (2001)

  10. Bel, L., Oppenheim, G., Robbiano, L., Viano, M.C.: Linear distribution processes. Int. J. Stoch. Anal. 11(1), 43–58 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  12. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gribonval, R., Cevher, V., Davies, M.E.: Compressible distributions for high-dimensional statistics. IEEE Trans. Inf. Theory 58(8), 5016–5034 (2012)

    Article  MathSciNet  Google Scholar 

  14. Gelfand, I.M.: Generalized random processes. Dokl. Akad. Nauk. SSSR 100, 853–856 (1955)

    MathSciNet  Google Scholar 

  15. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Number 16. American mathematical society (1955)

  16. Gelfand, I.: Generalized Functions. Applications of Harmonic Analysis, vol. 4. Academic press, New York (1964)

    Google Scholar 

  17. Kamilov, U.S., Pad, P., Amini, A., Unser, M.: MMSE estimation of sparse Lévy processes. IEEE Trans. Signal Process. 61(1), 137–147 (2013)

    Article  MathSciNet  Google Scholar 

  18. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  19. Mumford, D., Gidas, B.: Stochastic models for generic images. Q. Appl. Math. 59(1), 85–112 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Mandelbrot, B.B., Van Ness, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pad, P., Unser, M.: On the optimality of operator-like wavelets for sparse ar(1) processes. In: Proceedings of the Thirty-Eight IEEE International Conference on Acoustics. Speech and Signal Processing (ICASSP’13) 59(8), 5063–5074 (2013)

  22. Ruiz-Medina, M.D., Angulo, J.M., Anh, V.V.: Fractional generalized random fields on bounded domains. Stochastic Anal. Appl. 21(2), 465–492 (2003)

  23. Rudin, W.: Functional Analysis. International Series in Pure and Applied Mathematics. McGraw-Hill Inc, New York (1991)

    Google Scholar 

  24. Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Chapman & Hall, New York (1994)

    Google Scholar 

  25. Schwartz, L.: Théorie Des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  26. Srivastava, A., Lee, A.B., Simoncelli, E.P., Zhu, S.C.: On advances in statistical modeling of natural images. J. Math. Imag. Vis. 18(1), 17–33 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Processes: Stochastic Models with Infinite Variance. Chapman and Hall, New York (1994)

    MATH  Google Scholar 

  28. Sun, Q., Unser, M.: Left-inverses of fractional Laplacian and sparse stochastic processes. Adv. Comput. Math. 36(3), 399–441 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  29. Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

  30. Tafti, P.D., Van De Ville, D., Unser, M.: Invariances, Laplacian-like wavelet bases, and the whitening of fractal processes. IEEE Trans. Image Process. 18(4), 689–702 (2009)

    Article  MathSciNet  Google Scholar 

  31. Unser, M., Tafti, P.D.: Stochastic models for sparse and piecewise-smooth signals. IEEE Trans. Signal Process. 59(3), 989–1006 (2011)

    Article  MathSciNet  Google Scholar 

  32. Unser, M., Tafti, P.D., Amini, A., Kirshner, H.: A unified formulation of gaussian versus sparse stochastic processes—Part II: discrete-domain theory. IEEE Trans. Inf. Theory 60(5), 3036–3051 (2014)

    Article  MathSciNet  Google Scholar 

  33. Unser, M., Tafti, P.D., Sun, Q.: A unified formulation of Gaussian versus sparse stochastic processes—Part I: continuous-domain theory. IEEE Trans. Inf. Theory 60(3), 1945–1962 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to R. Dalang for the fruitful discussions we had and V. Uhlmann for her helpful suggestions during the writing. The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no 267439.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Fageot.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fageot, J., Amini, A. & Unser, M. On the Continuity of Characteristic Functionals and Sparse Stochastic Modeling. J Fourier Anal Appl 20, 1179–1211 (2014). https://doi.org/10.1007/s00041-014-9351-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9351-4

Keywords

Mathematics Subject Classification

Navigation