Skip to main content
Log in

Wavelet Frame Bijectivity on Lebesgue and Hardy Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We prove a sufficient condition for frame-type wavelet series in L p, the Hardy space H 1, and BMO. For example, functions in these spaces are shown to have expansions in terms of the Mexican hat wavelet, thus giving a strong answer to an old question of Meyer.

Bijectivity of the wavelet frame operator acting on Hardy space is established with the help of new frequency-domain estimates on the Calderón–Zygmund constants of the frame kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bui, H.-Q., Laugesen, R.S.: Frequency-scale frames and the solution of the Mexican hat problem. Constr. Approx. 33, 163–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bui, H.-Q., Laugesen, R.S.: Wavelets in Littlewood–Paley space, and Mexican hat completeness. Appl. Comput. Harmon. Anal. 30, 204–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bui, H.-Q., Paluszyński, M.: On the phi and psi transforms of Frazier and Jawerth. Math. Nachr. 284(2–3), 186–198 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cabrelli, C., Molter, U., Romero, J.L.: Non-uniform painless decompositions for anisotropic Besov and Triebel-Lizorkin spaces arXiv:1108.2748

  5. Casazza, P.G., Christensen, O.: Weyl–Heisenberg frames for subspaces of \(L^{2}(\mathbb{R})\). Proc. Am. Math. Soc. 129(1), 145–154 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chui, C.K., He, W., Stöckler, J.: Compactly supported tight and sibling frames with maximum vanishing moments. Appl. Comput. Harmon. Anal. 13, 224–262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chui, C.K., Shi, X.L.: Bessel sequences and affine frames. Appl. Comput. Harmon. Anal. 1, 29–49 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83(4), 569–645 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1992)

    Book  MATH  Google Scholar 

  10. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14, 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fefferman, C., Stein, E.M.: H p spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  12. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feichtinger, H.G., Gröchenig, K.H.: Banach spaces related to integrable group representations and their atomic decompositions. II. Monatshefte Math. 108, 129–148 (1989)

    Article  MATH  Google Scholar 

  14. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frazier, M., Jawerth, B., Weiss, G.: Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conference Series in Mathematics, vol. 79. American Mathematical Society, Providence (1991). Published for the Conference Board of the Mathematical Sciences, Washington, DC

    MATH  Google Scholar 

  17. Gilbert, J.E., Han, Y.S., Hogan, J.A., Lakey, J.D., Weiland, D., Weiss, G.: Smooth molecular decompositions of functions and singular integral operators. Mem. Amer. Math. Soc. 156(742) (2002). 74 pp.

    Google Scholar 

  18. García–Cuerva, J., Rubio de Francia, J.L.: Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies, vol. 116. North-Holland, Amsterdam (1985). Notas de Matemática, 104

    MATH  Google Scholar 

  19. Grafakos, L.: Classical Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 249. Springer, New York (2008)

    MATH  Google Scholar 

  20. Grafakos, L.: Modern Fourier Analysis, 2nd edn. Graduate Texts in Mathematics, vol. 250. Springer, New York (2008)

    Google Scholar 

  21. Gripenberg, G.: Wavelet bases in \(L_{p}(\mathbb{R})\). Studia Math. 106(2), 175–187 (1993)

    MathSciNet  MATH  Google Scholar 

  22. Gröchenig, K.H.: Describing functions: atomic decompositions versus frames. Monatshefte Math. 112, 1–42 (1991)

    Article  MATH  Google Scholar 

  23. Hernández, E., Weiss, G.: A First Course on Wavelets. CRC Press, Boca Raton (1996)

    Book  MATH  Google Scholar 

  24. Laugesen, R.S.: Affine synthesis onto L p when 0<p≤1. J. Fourier Anal. Appl. 14, 235–266 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, K., Sun, W.: Convergence of wavelet frame operators as the sampling density tends to infinity. Appl. Comput. Harmon. Anal. 33, 140–147 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbit and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyer, Y.: Wavelets and Operators. Translated from the 1990 French Original by D.H. Salinger. Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  28. Meyer, Y., Coifman, R.: Wavelets. Calderón–Zygmund and Multilinear Operators. Translated from the 1990 and 1991 French Originals by David Salinger. Cambridge Studies in Advanced Mathematics, vol. 48. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  29. Morlet, J.: Sampling theory and wave propagation. In: Chen, C.H. (ed.) Issues in Acoustic Signal–Image Processing and Recognition. NATO ASI Series, pp. 233–261. Springer, Berlin (1983)

    Chapter  Google Scholar 

  30. Rauhut, H., Ullrich, T.: Generalized coorbit space theory and inhomogeneous function spaces of Besov-Lizorkin-Triebel type. J. Funct. Anal. 260, 3299–3362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ron, A., Shen, Z.: Compactly supported tight affine spline frames in \(L^{2}(\mathbb{R}^{d})\). Math. Comput. 67, 191–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tao, T.: L p non-invertibility of frame operators. http://www.math.ucla.edu/~tao/preprints/harmonic.html

  33. Wojtaszczyk, P.: Wavelets as unconditional bases in \(L_{p}(\mathbb{R})\). J. Fourier Anal. Appl. 5(1), 73–85 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Laugesen thanks the Department of Mathematics and Statistics at the University of Canterbury, New Zealand, for hosting him during much of this research. This work was partially supported by a grant from the Simons Foundation (#204296 to Richard Laugesen). The authors are grateful to an anonymous referee for the careful reading of the manuscript and for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Laugesen.

Additional information

Communicated by Hans G. Feichtinger.

Dedicated to our friend and mentor Guido Weiss.

Appendices

Appendix A: Geometric Sums

In order to extend our decay estimates from K 0 to the full kernel K, earlier in the paper, we summed over dilation scales \(j \in \mathbb{Z}\). Here we collect elementary estimates used in that task.

Lemma A.1

Assume \(g : \mathbb{R}\to\mathbb{R}\) and let σ,τ>0.

  1. (i)

    If |g(z)|≤min{σ,τ/|z|2} for all z≠0, then

    $$\sum_{j \in\mathbb{Z}} \bigl|A^j g\bigl(A^j z\bigr)\bigr| \leq\frac{2|A|}{|A|-1} \frac{\sqrt{\sigma\tau}}{|z|} , \quad z \neq0 . $$
  2. (ii)

    If |g(z)|≤min{σ,τ/|z|3} for all z≠0, then

    $$\sum_{j \in\mathbb{Z}} \bigl|A^{2j} g\bigl(A^j z\bigr)\bigr| \leq\frac{|A|(2|A|+1)}{|A|^2-1} \frac{\sqrt[3]{\sigma \tau^2}}{|z|^2} , \quad z \neq0 . $$

Proof of Lemma A.1

(i) Fix z≠0 and let J be any integer. We split the sum into two pieces and estimate each piece using the assumption on g:

by the geometric series. Choose J to be the smallest integer satisfying \(|A|^{J} |z| > \sqrt{\tau/\sigma}\), so that \(|A|^{J-1} |z| \leq\sqrt{\tau/\sigma}\). (To motivate this choice, notice that στ/|z|2 if and only if \(|z| \leq\sqrt{\tau/\sigma}\).) Then

$$\sum_{j \in\mathbb{Z}} \bigl|A^j g\bigl(A^j z\bigr)\bigr| \leq\frac{|A|}{|A|-1} \bigl( \sqrt{\tau/\sigma} |z|^{-1} \sigma+ \sqrt{\sigma/\tau} |z|^{-1} \tau\bigr) , $$

from which part (i) of the lemma follows.

(ii) Adapt part (i), except choose J to be the smallest integer satisfying \(|A|^{J} |z| > \sqrt[3]{\tau/\sigma}\). □

Appendix B: Weak–Strong Interpolation Between L 1 and L 2

The Marcinkiewicz interpolation theorem implies in particular that if a sublinear operator satisfies weak-L r and weak-L 2 bounds, then strong-L p bounds hold for p between r and 2. By strengthening the second hypothesis to strong-L 2 and calling also on Riesz–Thorin interpolation (which requires the operator to be linear), we will obtain an explicit estimate on the L p norm such that equality holds when p=2.

The bound will involve the following constants, for 1≤r<p≤2:

Notice p=2 gives c(2)=1, and indeed c(2,r)=1 for each r. At the other extreme of p-values, we see c(p,r) blows up like (pr)−1/r as pr, and c(p) blows up like (p−1)−1 as p↓1. See Fig. 4.

Fig. 4
figure 4

The logarithm of the L p constant in Proposition B.1. Note c(2)=1 (Color figure online)

Proposition B.1

Let (X,μ) and (Y,ν) be measure spaces, and 1≤r<2. Assume Z is a linear operator from L r(X)+L 2(X) to the space of measurable complex-valued functions on Y.

If Z is weak type (r,r) and strong type (2,2), then Z is strong type (p,p) for r<p≤2, with

$$\Vert Z \Vert_{L^p(X) \to L^p(Y)} \leq c(p,r) \Vert Z \Vert _{L^r(X) \to\mathrm{weak}\mbox{-}L^r(Y)}^{ [(2/p) - 1 ]/ [(2/r)-1 ]} \Vert Z \Vert_{L^2(X) \to L^2(Y)}^{ [ (2/r) - (2/p) ]/ [ (2/r)-1 ]} . $$

(Equality holds for p=2.) In particular, when r=1 the conclusion says for 1<p≤2 that

$$\Vert Z \Vert_{L^p(X) \to L^p(Y)} \leq c(p) \Vert Z \Vert_{L^1(X) \to\mathrm{weak}\text{-}L^1(Y)}^{(2/p) - 1} \Vert Z \Vert_{L^2(X) \to L^2(Y)}^{2 - (2/p)} . $$

A similar result holds if we assume strong type (q,q), but the proposition focuses on strong type (2,2) because so many operators in harmonic analysis are bounded on L 2.

The case r=1 of the proposition improves by a factor of about 8 (when p is close to 2) on the best bound we found in the literature, which is an exercise in the monograph by Grafakos [19, Exercise 1.3.2]. We follow the same approach as Grafakos, except in the proof below we employ the harmonic mean of 1 and p instead of the arithmetic mean; the harmonic mean yields simpler formulas.

Proof of Proposition B.1

Suppose r<q<p≤2. Then Marcinkiewicz interpolation applied with r<q<2 (see [19, Theorem 1.3.2]) implies boundness of Z on L q, with

$$ \Vert Z \Vert_{L^q \to L^q} \leq2 \biggl( \frac{q}{q-r} + \frac{q}{2-q} \biggr)^{\! \! 1/q} \Vert Z \Vert_{L^r \to\text{weak-}L^r}^{ [(2/q) - 1 ]/ [ (2/r)-1 ]} \Vert Z \Vert_{L^2 \to L^2}^{ [ (2/r) - (2/q) ]/ [ (2/r)-1 ]} . $$
(35)

Next, Riesz–Thorin interpolation applied with q<p≤2 (see [19, Theorem 1.3.4]) says that

$$\Vert Z \Vert_{L^p \to L^p} \leq\Vert Z \Vert_{L^q \to L^q}^{ [ (2/p)-1 ]/ [ (2/q)-1 ]} \Vert Z \Vert_{L^2 \to L^2}^{ [ (2/q)-(2/p) ]/ [ (2/q)-1 ]} . $$

We substitute the Marcinkiewicz bound (35) into this last Riesz–Thorin bound, giving that

(36)

We would like to choose q∈(r,p] to minimize the right side of bound (36). That coefficient seems too complicated for analytical minimization to be feasible, but numerical work suggests that a good (i.e., within a factor of about 2 of being minimal) choice for q is the harmonic mean of r and p:

$$\frac{1}{q} = \frac{1}{2} \biggl( \frac{1}{r} + \frac{1}{p} \biggr) . $$

Substituting this choice of q into (36) yields the constant c(p,r) claimed in the proposition.

Notice equality holds when p=2, because equality holds in the Riesz–Thorin bound. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bui, HQ., Laugesen, R.S. Wavelet Frame Bijectivity on Lebesgue and Hardy Spaces. J Fourier Anal Appl 19, 376–409 (2013). https://doi.org/10.1007/s00041-013-9268-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9268-3

Keywords

Mathematics Subject Classification

Navigation