Skip to main content
Log in

Optimal Observation of the One-dimensional Wave Equation

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the homogeneous one-dimensional wave equation on [0,π] with Dirichlet boundary conditions, and observe its solutions on a subset ω of [0,π]. Let L∈(0,1). We investigate the problem of maximizing the observability constant, or its asymptotic average in time, over all possible subsets ω of [0,π] of Lebesgue measure . We solve this problem by means of Fourier series considerations, give the precise optimal value and prove that there does not exist any optimal set except for L=1/2. When L≠1/2 we prove the existence of solutions of a relaxed minimization problem, proving a no gap result. Following Hébrard and Henrot (Syst. Control Lett., 48:199–209, 2003; SIAM J. Control Optim., 44:349–366, 2005), we then provide and solve a modal approximation of this problem, show the oscillatory character of the optimal sets, the so called spillover phenomenon, which explains the lack of existence of classical solutions for the original problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Here the uniqueness must be understood up to some subset of zero Lebesgue measure. In other words if ω is optimal then \(\omega\cup\mathcal{N}\) and \(\omega\setminus\mathcal{N}\) where \(\mathcal{N}\) denotes any subset of zero measure is also a solution.

  2. Note that, since the dynamics of (36) do not depend on the state, it follows that the adjoint states of the Pontryagin Maximum Principle are constant.

References

  1. Allaire, G., Henrot, A.: On some recent advances in shape optimization. C. R. Acad. Sci. Paris 329, 383–396 (2001)

    MATH  Google Scholar 

  2. Bucur, D., Buttazzo, G.: Variational Methods in Shape Optimization Problems. Progress in Nonlinear Differential Equations, vol. 65. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  3. Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Commun. Partial Differ. Equ. 19, 213–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Danskin, J.M.: The Theory of Max Min. Springer, Berlin (1967)

    MATH  Google Scholar 

  5. Fahroo, F., Ito, K.: Optimum damping design for an abstract wave equation. Kybernetika 32(6), 557–574 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Frecker, M.I.: Recent advances in optimization of smart structures and actuators. J. Intell. Mater. Syst. Struct. 14, 207–216 (2003)

    Article  Google Scholar 

  7. Hébrard, P., Henrot, A.: Optimal shape and position of the actuators for the stabilization of a string. Syst. Control Lett. 48, 199–209 (2003)

    Article  MATH  Google Scholar 

  8. Hébrard, P., Henrot, A.: A spillover phenomenon in the optimal location of actuators. SIAM J. Control Optim. 44, 349–366 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ingham, A.E.: Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41, 367–379 (1936)

    Article  MathSciNet  Google Scholar 

  10. Jaffard, S., Micu, S.: Estimates of the constants in generalized Ingham’s inequality and applications to the control of the wave equation. Asymptot. Anal. 28(3–4), 181–214 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Jaffard, S., Tucsnak, M., Zuazua, E.: On a theorem of Ingham. J. Fourier Anal. Appl. 3, 577–582 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kahane, J.P.: Pseudo-périodicité et séries de Fourier lacunaires. Ann. Sci. Éc. Norm. Super. 37, 93–95 (1962)

    MathSciNet  Google Scholar 

  13. Komiya, H.: Elementary proof for Sion’s minimax theorem. Kodai Math. J. 11(1), 5–7 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer, New York (2005)

    MATH  Google Scholar 

  15. Kubrusly, C.S., Malebranche, H.: Sensors and controllers location in distributed systems—a survey. Automatica 21, 117–128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kumar, S., Seinfeld, J.H.: Optimal location of measurements for distributed parameter estimation. IEEE Trans. Autom. Control 23, 690–698 (1978)

    Article  MATH  Google Scholar 

  17. Lions, J.-L.: Exact controllability, stabilizability and perturbations for distributed systems. SIAM Rev. 30, 1–68 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lions, J.-L.: Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tomes 1 & 2. Rech. Math. Appl. (Research in Applied Mathematics). Masson, Paris (1988)

    Google Scholar 

  19. Logan, B.: Bandlimited functions bounded below over an interval. Not. Am. Math. Soc. 24, A331 (1977)

    Google Scholar 

  20. Münch, A.: Optimal location of the support of the control for the 1-D wave equation: numerical investigations. Comput. Optim. Appl. 42, 443–470 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Periago, F.: Optimal shape and position of the support for the internal exact control of a string. Syst. Control Lett. 58(2), 136–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley-Interscience, New York (1962)

    MATH  Google Scholar 

  23. Privat, Y., Trélat, E., Zuazua, E.: Optimal location of controllers for the one-dimensional wave equation. Ann. Inst. Henri Poincaré, Anal. Non Linéaire (2012). doi:10.1016/j.anihpc.2012.11.005

    Google Scholar 

  24. Privat, Y., Trélat, E., Zuazua, E.: Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains. (2012). Preprint

  25. Russell, D.L.: Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions. SIAM Rev. 20(4), 639–739 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sion, M.: On general minimax theorems. Pac. J. Math. 8, 171–176 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trélat, E.: Contrôle Optimal. Théorie & Applications. Vuibert, Paris (2005) (French). Optimal Control. Theory and Applications

    MATH  Google Scholar 

  28. Vaaler, J.D.: Some extremal functions in Fourier analysis. Bull., New Ser., Am. Math. Soc. 12, 183–216 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Institut Henri Poincaré (Paris, France) for providing a very stimulating environment during the “Control of Partial and Differential Equations and Applications” program in the Fall 2010.

Y. Privat was partially supported by the ANR project GAOS “Geometric analysis of optimal shapes”.

E. Zuazua was partially supported by the Grant MTM2011-29306-C02-00 of the MICINN (Spain), project PI2010-04 of the Basque Government, the ERC Advanced Grant FP7-246775 NUMERIWAVES, the ESF Research Networking Program OPTPDE.

The authors warmly thank Aline Bonami, Giuseppe Buttazzo and Michel Crouzeix for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Trélat.

Additional information

Communicated by Stéphane Jaffard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Privat, Y., Trélat, E. & Zuazua, E. Optimal Observation of the One-dimensional Wave Equation. J Fourier Anal Appl 19, 514–544 (2013). https://doi.org/10.1007/s00041-013-9267-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9267-4

Keywords

Mathematics Subject Classification

Navigation