Skip to main content
Log in

Optimally Space Localized Polynomials with Applications in Signal Processing

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

For the filtering of peaks in periodic signals, we specify polynomial filters that are optimally localized in space. The space localization of functions f having an expansion in terms of orthogonal polynomials is thereby measured by a generalized mean value ε(f). Solving an optimization problem including the functional ε(f), we determine those polynomials out of a polynomial space that are optimally localized. We give explicit formulas for these optimally space localized polynomials and determine in the case of the Jacobi polynomials the relation of the functional ε(f) to the position variance of a well-known uncertainty principle. Further, we will consider the Hermite polynomials as an example on how to get optimally space localized polynomials in a non-compact setting. Finally, we investigate how the obtained optimal polynomials can be applied as filters in signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aptekarev, A., Dehesa, J.S., Martinez-Finkelshtein, A.: Asymptotics of orthogonal polynomial’s entropy. J. Comput. Appl. Math. 233(6), 1355–1365 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    MATH  Google Scholar 

  3. Erb, W.: Uncertainty principles on compact Riemannian manifolds. Appl. Comput. Harmon. Anal. 29(2), 182–197 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Erb, W.: Uncertainty principles on Riemannian manifolds. Dissertation, Logos Verlag, Berlin (2010). Available at http://mediatum2.ub.tum.de/doc/976465

  5. Erb, W., Toókos, F.: Applications of the monotonicity of extremal zeros of orthogonal polynomials in interlacing and optimization problems. Appl. Math. Comput. 217(9), 4771–4780 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Filbir, F., Mhaskar, H.N., Prestin, J.: On a filter for exponentially localized kernels based on Jacobi polynomials. J. Approx. Theory 160(1–2), 256–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3(3), 207–233 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  9. Goh, S.S., Goodman, T.N.T.: Uncertainty principles and asymptotic behavior. Appl. Comput. Harmon. Anal. 16(1), 69–89 (2004)

    Article  MathSciNet  Google Scholar 

  10. Gröchenig, K.: Uncertainty principles for time-frequency representations. In: Feichtinger, H., Strohmer, T. (eds.) Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis, pp. 11–30. Birkhäuser, Basel (2003)

    Chapter  Google Scholar 

  11. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  MATH  Google Scholar 

  12. Ismail, M.E.: The variation of zeros of certain orthogonal polynomials. Adv. Appl. Math. 8, 111–118 (1987)

    Article  MATH  Google Scholar 

  13. Ismail, M.E.: Classical and Quantum Orthogonal Polynomials in One Variable. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  14. Ivanov, K., Petrushev, P., Xu, Y.: Sub-exponentially localized kernels and frames induced by orthogonal expansions. Math. Z. 264, 361–397 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laín Fernández, N.: Optimally space-localized band-limited wavelets on \(\mathbb{S}^{q-1}\). J. Comput. Appl. Math. 199(1), 68–79 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Landau, H.J.: An overview of time and frequency limiting. In: Price, J. (ed.) Fourier Techniques and Applications, pp. 201–220. Plenum, New York (1985)

    Chapter  Google Scholar 

  17. Lasser, R.: Introduction to Fourier Series. Marcel Dekker, New York (1996)

    MATH  Google Scholar 

  18. Li, Z., Liu, L.: Uncertainty principles for Jacobi expansions. J. Math. Anal. Appl. 286(2), 652–663 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mhaskar, H.N.: Introduction to the Theory of Weighted Polynomial Approximation. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  20. Mhaskar, H.N., Narcowich, F.J., Prestin, J., Ward, J.D.: Polynomial frames on the sphere. Adv. Comput. Math. 13(4), 387–403 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mhaskar, H.N., Prestin, J.: Polynomial frames: a fast tour. In: Chui, C.K., Schumaker, L.L, Neamtu, M. (eds.) Approximation Theory XI. Gatlinburg, 2004, pp. 287–318. Nashboro Press, Brentwood (2005)

    Google Scholar 

  22. Nguyen, N., Huang, H., Oraintara, S., Vo, A.: Gaborlocal: peak detection in mass spectrum by Gabor filters and Gaussian local maxima. In: Comput. Syst. Bioinformatics Conf., vol. 7, pp. 85–96 (2008)

    Google Scholar 

  23. Prestin, J., Quak, E., Rauhut, H., Selig, K.: On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl. 9(4), 387–409 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rauhut, H.: Best time localized trigonometric polynomials and wavelets. Adv. Comput. Math. 22(1), 1–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rösler, M., Voit, M.: An uncertainty principle for ultraspherical expansions. J. Math. Anal. Appl. 209, 624–634 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Selig, K.K.: Uncertainty principles revisited. Electron. Trans. Numer. Anal. 14, 164–176 (2002)

    MathSciNet  Google Scholar 

  27. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25, 379–393 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Szegö, G.: Orthogonal Polynomials. American Mathematical Society, Providence (1939)

    Google Scholar 

  29. Yang, C., He, Z., Yu, W.: Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis. BMC Bioinform. 10, 4 (2009) Available at http://www.biomedcentral.com/1471-2105/10/4

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Erb.

Additional information

Communicated by Michael Frazier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erb, W. Optimally Space Localized Polynomials with Applications in Signal Processing. J Fourier Anal Appl 18, 45–66 (2012). https://doi.org/10.1007/s00041-011-9184-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9184-3

Keywords

Mathematics Subject Classification (2000)

Navigation