Skip to main content
Log in

On Energy, Discrepancy and Group Invariant Measures on Measurable Subsets of Euclidean Space

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

Given \(\mathcal{X}\), some measurable subset of Euclidean space, one sometimes wants to construct a finite set of points, \(\mathcal{P}\subset\mathcal {X}\), called a design, with a small energy or discrepancy. Here it is shown that these two measures of design quality are equivalent when they are defined via positive definite kernels \(K:\mathcal{X}^{2}(=\mathcal{X}\times\mathcal {X})\to\mathbb{R}\). The error of approximating the integral \(\int_{\mathcal{X}}f(\boldsymbol{x})\,\mathrm{d}\mu(\boldsymbol{x})\) by the sample average of f over \(\mathcal{P}\) has a tight upper bound in terms of the energy or discrepancy of \(\mathcal{P}\). The tightness of this error bound follows by requiring f to lie in the Hilbert space with reproducing kernel K. The theory presented here provides an interpretation of the best design for numerical integration as one with minimum energy, provided that the measure μ defining the integration problem is the equilibrium measure or charge distribution corresponding to the energy kernel, K.

If \(\mathcal{X}\) is the orbit of a compact, possibly non-Abelian group, \(\mathcal{G}\), acting as measurable transformations of \(\mathcal{X}\) and the kernel K is invariant under the group action, then it is shown that the equilibrium measure is the normalized measure on \(\mathcal{X}\) induced by Haar measure on \(\mathcal{G}\). This allows us to calculate explicit representations of equilibrium measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrievskii, V.V., Blatt, H.P.: Discrepancy of Signed Measures and Polynomial Approximation. Springer Monographs in Mathematics. Springer, New York (2002)

    MATH  Google Scholar 

  2. Andrievskii, V.V., Blatt, H.P., Götz, M.: Discrepancy estimates on the sphere. Monatshefte Math. 128, 179–188 (1999)

    Article  MATH  Google Scholar 

  3. Benko, D., Damelin, S.B., Dragnev, P.D.: On the support of the equilibrium measure for arcs of the unit circle and real intervals. Electron. Trans. Numer. Anal. 25, 27–40 (2006)

    MATH  MathSciNet  Google Scholar 

  4. Blatt, H.P., Mhaskar, H.N.: A general discrepancy theorem. Ark. Mat. 31, 219–246 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cranley, R., Patterson, T.N.L.: Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904–914 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. D’Agostino, R.B., Stephens, M.A. (eds.): Goodness-of-Fit Techniques. Dekker, New York (1986)

    MATH  Google Scholar 

  7. Damelin, S.B.: Marcinkiewicz-Zygmund inequalities and the numerical approximation of singular integrals for exponential weights: methods,results and open problems, some new, some old. J. Complex. 19, 406–415 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Damelin, S.B., Grabner, P.: Numerical integration, energy and asymptotic equidistributon on the sphere. J. Complex. 19, 231–246 (2003)

    Article  MathSciNet  Google Scholar 

  9. Damelin, S.B., Kuijlaars, A.B.J.: The support of the equilibrium measure for monomial external fields on [−1,1]. Trans. Am. Math. Soc. 351, 4561–4584 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Damelin, S.B., Maymeskul, V.: On point energies, separation radius and mesh norm for s-extremal configurations on compact sets in ℝn. J. Complex. 21, 845–863 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Damelin, S.B., Dragnev, P.D., Kuijlaars, A.B.J.: The support of the equilibrium measure for a class of external fields on a finite interval. Pac. J. Math. 199, 303–321 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Damelin, S.B., Levesley, J., Ragozin, D.L., Sun, X.: Energies, group-invariant kernels and numerical integration on compact manifolds. J. Complex. 25(2), 152–162 (2009). doi:10.1016/j.jco.2008.09.001

    Article  MATH  MathSciNet  Google Scholar 

  13. Deift, P.: Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics. Courant Institute, New York (1999)

    Google Scholar 

  14. Du, Q., Faber, V., Gunzburger, M.: Centroidal Voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fasshauer, G.E.: Meshfree Approximation Methods with Matlab. Interdisciplinary Mathematical Sciences, vol. 6. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  16. Grabner, P.J., Tichy, R.F.: Spherical designs, discrepancy and numerical integration. Math. Comput. 60, 327–336 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hardin, D.P., Saff, E.B.: Discretizing manifolds via minimum energy points. Not. Am. Math. Soc. 51, 1186–1194 (2004)

    MATH  MathSciNet  Google Scholar 

  18. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299–322 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hickernell, F.J.: Goodness-of-fit statistics, discrepancies and robust designs. Stat. Probab. Lett. 44, 73–78 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hickernell, F.J.: What affects the accuracy of quasi-Monte Carlo quadrature? In: Niederreiter, H., Spanier, J. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 1998, pp. 16–55. Springer, Berlin (2000)

    Google Scholar 

  21. Hickernell, F.J., Sloan, I.H., Wasilkowski, G.W.: On tractability of weighted integration over bounded and unbounded regions in ℝs. Math. Comput. 73, 1885–1901 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)

    MATH  Google Scholar 

  23. Larcher, G.: Digital point sets: analysis and applications. In: Hellekalek, P., Larcher, G. (eds.) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol. 138, pp. 167–222. Springer, New York (1998)

    Google Scholar 

  24. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on the sphere I. Commun. Pure Appl. Math. 39, 148–186 (1986)

    Article  MathSciNet  Google Scholar 

  25. Lubotzky, A., Phillips, R., Sarnak, P.: Hecke operators and distributing points on the sphere II. Commun. Pure Appl. Math. 40, 401–420 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mhaskar, H.N.: Weighted polynomials, radial basis functions, and potentials on locally compact spaces. Numer. Funct. Anal. Optim. 11, 987–1017 (1990/1991)

    Article  MathSciNet  Google Scholar 

  27. Mhaskar, H.N.: Introduction to the Theory of Weighted Polynomial Approximation. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  28. Mhaskar, H.N.: On the tractability of multivariate integration and approximation by neural networks. J. Complex. 20, 561–590 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  29. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  30. Novak, E., Woźniakowski, H.: When are integration and discrepancy tractable? In: Foundations of Computational Mathematics. London Math. Soc. Lecture Note Ser., vol. 284. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  31. Owen, A.B.: Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo. In: Niederreiter, H., Spanier, J. (eds.): Monte Carlo and Quasi-Monte Carlo Methods 1998. Springer, Berlin (2000)

    Google Scholar 

  32. Saff, E.B., Totik, V.: Logarithmic Potentials with External Fields. Springer, New York (1997)

    MATH  Google Scholar 

  33. Santner, T.J., Williams, B.J., Notz, W.I.: The Design & Analysis of Computer Experiments. Springer, New York (2003)

    MATH  Google Scholar 

  34. SAS Institute: JMP 7.0 (2007)

  35. Sjögren, P.: Estimates of mass distributions from their potentials and energies. Ark. Mat. 10, 5977–5987 (1972)

    Article  Google Scholar 

  36. Sloan, I.H., Joe, S.: Lattice Methods for Multiple Integration. Oxford University Press, London (1994)

    MATH  Google Scholar 

  37. Stahl, H., Totik, V.: General Orthogonal Polynomials. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  38. Totik, V.: Weighted Approximation with Varying Weight. Lecture Notes in Mathematics, vol. 1569. Springer, Berlin (1994)

    MATH  Google Scholar 

  39. Wendland, H.: Scattered Data Approximation. Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  40. Weyl, H.: Über die Gleichverteilung der Zahlen mod Eins. Math. Ann. 77, 313–352 (1916)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Damelin.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damelin, S.B., Hickernell, F.J., Ragozin, D.L. et al. On Energy, Discrepancy and Group Invariant Measures on Measurable Subsets of Euclidean Space. J Fourier Anal Appl 16, 813–839 (2010). https://doi.org/10.1007/s00041-010-9153-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-010-9153-2

Keywords

Navigation