Skip to main content
Log in

From Exact Systems to Riesz Bases in the Balian–Low Theorem

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We look at the time–frequency localization of generators of lattice Gabor systems. For a generator of a Riesz basis, this localization is described by the classical Balian–Low theorem. We establish Balian–Low type theorems for complete and minimal Gabor systems with a frame-type approximation property. These results describe how the best possible localization of a generator is limited by the degree of control over the coefficients in approximations given by the system, and provide a continuous transition between the classical Balian–Low conditions and the corresponding conditions for generators of complete and minimal systems. Moreover, this holds for the non-symmetric generalizations of these theorems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balian, R.: Un principe d’incertitude fort en théorie du signal ou en mécanique quantique. C.R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univ. Sci. Terre 292(20), 1357–1362 (1981)

    MathSciNet  Google Scholar 

  2. Benedetto, J.J., Czaja, W., Gadziński, P., Powell, A.M.: The Balian–Low theorem and regularity of Gabor systems. J. Geom. Anal. 13(2), 239–254 (2003)

    MathSciNet  Google Scholar 

  3. Benedetto, J.J., Czaja, W., Powell, A.M.: An optimal example for the Balian–Low uncertainty principle. SIAM J. Math. Anal. 38(1), 333–345 (2006) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benedetto, J.J., Czaja, W., Powell, A.M., Sterbenz, J.: An endpoint (1,∞) Balian–Low theorem. Math. Res. Lett. 13(2–3), 467–474 (2006)

    MATH  MathSciNet  Google Scholar 

  5. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  6. Daubechies, I., Janssen, A.J.E.M.: Two theorems on lattice expansions. IEEE Trans. Inf. Theory 39(1), 3–6 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dörfler, M.: Time–frequency analysis for music signals: A mathematical approach. J. New Mus. Res. 30(1), 3–12 (2001)

    Article  Google Scholar 

  8. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. 93, 429–457 (1946)

    Google Scholar 

  9. Gautam, S.Z.: A critical-exponent Balian–Low theorem. Math. Res. Lett. 15(3), 471–483 (2008)

    MATH  MathSciNet  Google Scholar 

  10. Gröchenig, K.: An uncertainty principle related to the Poisson summation formula. Studia Math. 121(1), 87–104 (1996)

    MATH  MathSciNet  Google Scholar 

  11. Gröchenig, K.: Foundations of Time–Frequency Analysis. Birkhauser, Boston (2001)

    MATH  Google Scholar 

  12. Gröchenig, K., Heil, C.: Modulation spaces and pseudodifferential operators. Integral Equ. Oper. Theory 34(4), 439–457 (1999)

    Article  Google Scholar 

  13. Heil, C.: History and evolution of the density theorem for Gabor frames. J. Fourier Anal. Appl. 13(2), 113–166 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Heil, C., Powell, A.M.: Gabor Schauder bases and the Balian–Low theorem. J. Math. Phys. 47(11), 1–21 (2006)

    Article  MathSciNet  Google Scholar 

  15. Heil, C., Powell, A.M.: Regularity for complete and minimal Gabor systems on a lattice. Ill. J. Math., to appear

  16. Jensen, H.E., Høholdt, T., Justesen, J.: Double series representation of bounded signals. IEEE Trans. Inf. Theory 34(4), 613–624 (1988)

    Article  MATH  Google Scholar 

  17. Kozek, W.: Adaptation of Weyl–Heisenberg frames to underspread environments. In: Gabor Analysis and Algorithms. Appl. Numer. Harmon. Anal., pp. 323–352. Birkhäuser Boston, Boston (1998)

    Google Scholar 

  18. Low, F.E.: Complete sets of wave packets. In: DeTar, C., et al. (eds.) A Passion for Physics—Essays in Honor of Geoffrey Chew, pp. 17–22. World Scientific, Singapore (1985)

    Google Scholar 

  19. Nitzan, S.: Frame-type systems. Ph.D. thesis, Doctoral Thesis, Tel-Aviv University (2009)

  20. Nitzan, S., Olevskii, A.: Quasi-frames of translates. C.R. Math. Acad. Sci. Paris 347(13–14), 739–742 (2009)

    MATH  MathSciNet  Google Scholar 

  21. Nitzan-Hahamov, S., Olevskii, A.: Sparse exponential systems: completeness with estimates. Israel J. Math. 158, 205–215 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ramanathan, J., Steger, T.: Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal. 2(2), 148–153 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  23. Seip, K.: Density theorems for sampling and interpolation in the Bargmann–Fock space. I. J. Reine Angew. Math. 429, 91–106 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  25. Strohmer, T.: Pseudodifferential operators and Banach algebras in mobile communications. Appl. Comput. Harmon. Anal. 20(2), 237–249 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Young, R.M.: An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001). Revised first edn.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahaf Nitzan.

Additional information

Communicated by Karlheinz Gröchenig.

The first author is supported by the ERCIM “Alain Bensoussan” fellowship nr. 2009-05.

For a part of this work, the second author is supported by the Research Council of Norway grant 160192/V30.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nitzan, S., Olsen, JF. From Exact Systems to Riesz Bases in the Balian–Low Theorem. J Fourier Anal Appl 17, 567–603 (2011). https://doi.org/10.1007/s00041-010-9150-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-010-9150-5

Keywords

Mathematics Subject Classification (2000)

Navigation