Skip to main content
Log in

Assessing patterns of admixture and ancestry in Canadian honey bees

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Canadian honey bees, like all honey bees in the New World, originated from centuries of importation of predominately European subspecies, but their precise genetic ancestry has not been investigated. We used a citizen science approach that engaged a diverse group of beekeepers to undertake the largest population genetic study of Canadian honey bees. We used the dataset to characterize the ancestry of Canadian honey bee populations, test if Northern Canadian colonies have a greater proportion of ancestry from subspecies native to Northern Europe, and determine the effectiveness of using single nucleotide polymorphism (SNPs) to distinguish between Canadian bees and the aggressive and invasive Africanized honey bee found from South America to the Southern United States. We genotyped 855 worker honey bees at 91 ancestrally informative SNPs and found very low levels of genetic differentiation within Canada at these SNPs and small but significant differences in ancestry between provinces. Honey bee populations in Northern and Western Canada were more closely related to subspecies from Southern and Mediterranean Europe. We attributed this pattern to differences in importation practices within Canada. Finally, we were able to accurately discriminate between Africanized bees and Canadian bees using the ancestrally informative SNPs, supporting the use of SNPs for accurately detecting Africanized honey bees and providing valuable insights into the genetic structure of Canadian bees, all while engaging beekeepers in the scientific process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adam B (1983) In search of the best strains of bees, 2nd edn. Peacock Press, Bantam

    Google Scholar 

  • AHRA (2013) Risk assessment on the importation of honey bee (Apis mellifera) packages from the United States of America, Canadian Food Inspection Agency, vol 13, Canada

  • Alqarni AS, Hannan MA, Owayss AA, Engel MS (2011) The indigenous honey bees of Saudi Arabia (Hymenoptera, Apidae, Apis mellifera jemenitica Ruttner): their natural history and role in beekeeping. Zookeys. doi:10.3897/zookeys.134.1677

    PubMed Central  PubMed  Google Scholar 

  • Arias MC, Sheppard WS (1996) Molecular phylogenetics of honey bee subspecies (Apis mellifera L.) inferred from mitochondrial DNA sequence. Mol Phylogenet Evol 5:557–566

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Metthodol 57:289–300

    Google Scholar 

  • Beye M, Gattermeier I, Hasselmann M, Gempe T, Schioett M, Baines JF, Schlipalius D, Mougel F, Emore C, Rueppell O, Sirvio A, Guzman-Novoa E, Hunt G, Solignac M, Page RE (2006) Exceptionally high levels of recombination across the honey bee genome. Genome Res 16:1339–1344. doi:10.1101/Gr.5680406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Breed MD, Guzman-Novoa E, Hunt GJ (2004) Defensive behavior of honey bees: organization, genetics and comparisons with other bees. Annu Rev Entomol 49:271–298

    Article  CAS  PubMed  Google Scholar 

  • Chapman NC, Lim J, Oldroyd BP (2008) Population genetics of commercial and feral honey bees in Western Australia. J Econ Entomol 101:272–277

    Article  CAS  PubMed  Google Scholar 

  • Chapman NC, Harpur BA, Lim J, Rinderer TE, Allsopp MH, Zayed A, Oldroyd BP (2015a) Hybrid origins of Australian honey bees (Apis mellifera). Apidologie. doi:10.1007/s13592-015-0371-0

    Google Scholar 

  • Chapman NC, Harpur BA, Lim J, Rinderer TE, Allsopp MH, Zayed A, Oldroyd BP (2015b) A SNP test to identify Africanized honeybees via proportion of “African” ancestry. Mol Ecol Resour. doi:10.1111/1755-0998.12411

    Google Scholar 

  • Cobey S, Sheppard WS, Tarpy DR (2012) Status of breeding practices and genetic diversity in domestic US honey bees. In: Sammataro D, Yoder J (eds) Honey bee colony health: challenges and sustainable solutions. CRC Press, Boca Raton, pp 39–49

    Google Scholar 

  • Collet T, Ferreira KM, Arias MC, Soares AEE, Del Lama MA (2006) Genetic structure of Africanized honeybee populations (Apis mellifera L.) from Brazil and Uruguay viewed through mitochondrial DNA COI–COII patterns. Heredity 97:329–335. doi:10.1038/sj.hdy.6800875

    Article  CAS  PubMed  Google Scholar 

  • Collins AM, Rinderer TE, Harbo JB, Bolten AB (1982) Colony defense by Africanized and European honey bees. Science 218:72–74

    Article  CAS  PubMed  Google Scholar 

  • Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Cornuet J-M (1986) Population genetics. In: Rinderer TE (ed) Bee genetics and breeding. Academic Press, Orlando, pp 235–254

    Chapter  Google Scholar 

  • Crane E (1999) The world history of beekeeping and honey hunting. Routledge, New York

    Google Scholar 

  • De la Rua P, Jaffe R, Dall’Olio R, Munzos I, Serrana J (2009) Biodiversity, conservation and current threats to European honeybees. Apidologie 40:263–284

    Article  Google Scholar 

  • De la Rua P, Jaffe R, Munoz I, Serrano J, Moritz RFA, Kraus FB (2013) Conserving genetic diversity in the honeybee: comments on Harpur et al. (2012). Mol Ecol 22:3208–3210. doi:10.1111/mec.12333

    Article  PubMed  Google Scholar 

  • Delaney DA, Meixner MD, Schiff NM, Sheppard WS (2009) Genetic characterization of commercial honey bee (Hymenoptera: Apidae) populations in the United States by using mitochondrial and microsatellite markers. Ann Entomol Soc Am 102:666–673. doi:10.1603/008.102.0411

    Article  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  • Franck P, Garnery L, Solignac M, Cornuet JM (2000) Molecular confirmation of a fourth lineage in honeybees from the Near East. Apidologie 31:167–180

    Article  CAS  Google Scholar 

  • Franck P, Garnery L, Loiseau A, Oldroyd BP, Hepburn HR, Solignac M, Cornuet JM (2001) Genetic diversity of the honeybee in Africa: microsatellite and mitochondrial data. Heredity 86:420–430. doi:10.1046/j.1365-2540.2001.00842.x

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Cardona A, Acevedo-Gonzalez JP, Rivera-Marchand B, Giray T (2013) Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico. BMC Genet. doi:10.1186/1471-2156-14-65

    PubMed Central  PubMed  Google Scholar 

  • Garnery L, Cornuet JM, Solignac M (1992) Evolutionary history of the honey bee Apis mellifera inferred from mitochondrial DNA analysis. Mol Ecol 1:145–154. doi:10.1111/j.1365-294X.1992.tb00170.x

    Article  CAS  PubMed  Google Scholar 

  • Garnery L, Solignac M, Celebrano G, Cornuet JM (1993) A simple test using restricted PCR amplified mitochondrial DNA to study the genetic structure of Apis mellifera L. Experientia 49:1016–1021. doi:10.1007/bf02125651

    Article  CAS  Google Scholar 

  • Guzman-Novoa E, Page RE, Fondrk MK (1994) Morphometric techniques do not detect intermediate and low-levels of Africanization in honey bee (Hymenoptera, Apidae) colonies. Ann Entomol Soc Am 87:507–515

    Article  Google Scholar 

  • Harpur BA, Zayed A (2013) Accelerated evolution of innate immunity proteins in social insects: adaptive evolution or relaxed constraint? Mol Biol Evol 30:1665–1674. doi:10.1093/molbev/mst061

    Article  CAS  PubMed  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2012) Management increases genetic diversity of honey bees via admixture. Mol Ecol 21:4414–4421. doi:10.1111/j.1365-294X.2012.05614.x

    Article  PubMed  Google Scholar 

  • Harpur BA, Minaei S, Kent CF, Zayed A (2013) Admixture increases diversity in managed honey bees: reply to De la Rua et al. (2013). Mol Ecol 22:3211–3215. doi:10.1111/Mec.12332

    Article  PubMed  Google Scholar 

  • Harpur BA, Kent CF, Molodtsova D, Lebon JMD, Alqarni AS, Owayss AA, Zayed A (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. Proc Natl Acad Sci USA 111:2614–2619. doi:10.1073/pnas.1315506111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopkins I (1886) Illustrated Australasian bee manual and complete guide to modern bee culture in the Southern Hemispere, 3rd edn. Isaac Hopkins, Auckland

    Google Scholar 

  • Jensen AB, Palmer KA, Boomsma JJ, Pedersen BV (2005) Varying degrees of Apis mellifera ligustica introgression in protected populations of the black honeybee, Apis mellifera mellifera, in Northwest Europe. Mol Ecol 14:93–106. doi:10.1111/j.1365-294X.2004.02399.x

    Article  PubMed  Google Scholar 

  • Jolly B (2004) South Australia’s early ligurian beekeeping—and a lingering Kangaroo Island fable. J Hist Soc S Aust 32:69–81

    Google Scholar 

  • Jones JC, Myerscough MR, Graham S, Oldroyd BP (2004) Honey bee nest thermoregulation: diversity promotes stability. Science 305:402–404. doi:10.1126/science.1096340

    Article  CAS  PubMed  Google Scholar 

  • Kerr WE (1967) The history of the introduction of Africanized honey bees to Brazil. S Afr Bee J 39:3–5

    Google Scholar 

  • Koulianos S, Crozier R (1996) Mitochondrial DNA sequence data provides further evidence that the honeybees of Kangaroo Island, Australia are of hybrid origin. Apidologie 27:165–174

    Article  CAS  Google Scholar 

  • Koulianos S, Crozier R (1997) Mitochondrial sequence characterisation of Australian commercial and feral honeybee strains, Apis mellifera L. (Hymenoptera: Apidae), in the context of the species worldwide. Aust J Entomol 36:359–363

    Article  Google Scholar 

  • Langstroth L, Dadant C (1889) Langstroth on the hive and honey bee. C. Dadant & Son, Hamilton

    Book  Google Scholar 

  • Le Conte Y, Navajas M (2008) Climate change: impact on honey bee populations and diseases. Rev Sci Tech Oie 27:499–510

    Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science 317:362–364. doi:10.1126/science.1143046

    Article  CAS  PubMed  Google Scholar 

  • Meixner MD, Costa C, Kryger P, Hatjina F, Bouga M, Ivanova E, Buchler R (2010) Conserving diversity and vitality for honey bee breeding. J Apicult Res 49:85–92. doi:10.3896/ibra.1.49.1.12

    Article  Google Scholar 

  • Moritz RFA, Hartel S, Neumann P (2005) Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12:289–301. doi:10.2980/i1195-6860-12-3-289.1

    Article  Google Scholar 

  • Munoz I, Henriques D, Johnston JS, Chavez-Galarza J, Kryger P, Pinto MA (2015) Reduced SNP panels for genetic identification and introgression analysis in the dark honey bee (Apis mellifera mellifera). PLoS One. doi:10.1371/journal.pone.0124365

    Google Scholar 

  • Nielsen DI, Ebert PR, Page RE, Hunt GJ, Guzman-Novoa E (2000) Improved polymerase chain reaction-based mitochondrial genotype assay for identification of the africanized honey bee (Hymenoptera: Apidae). Ann Entomol Soc Am 93:1–6. doi:10.1603/0013-8746(2000)093[0001:Ipcrbm]2.0.Co;2

  • Oldroyd BP, Sheppard WS, Stelzer JA (1992) Genetic characterization of the bees of Kangaroo Island, South Australia. J Apicult Res 31:141–148

    Google Scholar 

  • Oldroyd BP, Cornuet JM, Rowe D, Rinderer TE, Crozier RH (1995) Racial admixture of Apis mellifera in Tasmania, Australia—similarities and differences with natural hybrid zones in Europe. Heredity 74:315–325. doi:10.1038/hdy.1995.46

    Article  Google Scholar 

  • Oxley PR, Oldroyd BP (2009) Mitochondrial sequencing reveals five separate origins of ‘black’ Apis mellifera (Hymenoptera: Apidae) in Eastern Australian commercial colonies. J Econ Entomol 102:480–484

    Article  CAS  PubMed  Google Scholar 

  • Palmer MR, Smith DR, Kaftanoglu O (2000) Turkish honeybees: genetic variation and evidence for a fourth lineage of Apis mellifera mtDNA. J Hered 91:42–46

    Article  CAS  PubMed  Google Scholar 

  • Pinto MA, Rubink WL, Patton JC, Coulson RN, Johnston JS (2005) Africanization in the United States: replacement of feral European honeybees (Apis mellifera L.) by an African hybrid swarm. Genetics 170:1653–1665. doi:10.1534/genetics.104.035030

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinto MA, Sheppard WS, Johnston JS, Rubink WL, Coulson RN, Schiff NM, Kandemir I, Patton JC (2007) Honey bees (Hymenoptera: Apidae) of African origin exist in non-Africanized areas of the Southern United States: evidence from mitochondrial DNA. Ann Entomol Soc Am 100:289–295

    Article  CAS  Google Scholar 

  • Pinto MA, Henriques D, Chaves-Galarza J, Kryger P, Garnery L, Van der Zee M, Dahle B, Soland-Reckeweg G, de la Rua P, Dall’Olio R, Carreck NL, Johnson JS (2014) Genetic integrity of the Dark European honey bee (Apis mellifera mellifera) from protected populations: a genome-wide assessment using SNPs and mtDNA sequence data. J Apicult Res 53:269–278

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rinderer TE, Stelzer JA, Oldroyd BP, Buco SM, Rubink WL (1991) Hybridization between European and Africanized honey bees in the neotropical Yucatan Peninsula. Science 253:309–311. doi:10.1126/science.253.5017.309

    Article  CAS  PubMed  Google Scholar 

  • Rinderer TE, Harris JW, Hunt GJ, de Guzman LI (2010) Breeding for resistance to Varroa destructor in North America. Apidologie 41:409–424. doi:10.1051/apido/2010015

    Article  Google Scholar 

  • Root AI (1985) ABC and XYZ of bee culture, 41st edn. A I Root Co, Medina

    Google Scholar 

  • Ruttner F (1976) Isolated populations of honeybees in Australia. J Apicult Res 15:97–104

    Google Scholar 

  • Ruttner F (1988) Biogeography and taxonomy of honeybees. Springer, Berlin

    Book  Google Scholar 

  • Schiff NM, Sheppard WS (1995) Genetic analysis of commercial honey bees (Hymenoptera, Apidae) from the Southeastern United States. J Econ Entomol 88:1216–1220

    Article  Google Scholar 

  • Seeley TD (1985) Honey bee ecology: a study of adaptation in social life. Princeton University Press, Princeton

    Book  Google Scholar 

  • Sheppard WS (1988) Comparative study of enzyme polymorphism in United States and European honey bee (Hymenoptera, Apidae) populations. Ann Entomol Soc Am 81:886–889

    Article  Google Scholar 

  • Sheppard WS (1989a) A history of the introduction of honey bee races into the United States. Part I. Am Bee J 129:617–619

    Google Scholar 

  • Sheppard WS (1989b) A history of the introduction of honey bee races into the United States. Part II. Am Bee J 129:664–667

    Google Scholar 

  • Sheppard WS (2012) Managed pollinator CAP coordinated agricultural project a national research and extension initiative to reverse pollinator decline honey bee genetic diversity and breeding towards the reintroduction of European germ plasm. Am Bee J 152:155–158

    Google Scholar 

  • Sheppard WS, Smith DR (2000) Identification of African-derived bees in the Americas: a survey of methods. Ann Entomol Soc Am 93:159–176

    Article  CAS  Google Scholar 

  • Sheppard WS, Soares AEE, Dejong D, Shimanuki H (1991) Hybrid status of honey bee populations near the historic origin of Africanization in Brazil. Apidologie 22:643–652. doi:10.1051/apido:19910607

    Article  Google Scholar 

  • Szalanski AL, Magnus RM (2010) Mitochondrial DNA characterization of Africanized honey bee (Apis mellifera L.) populations from the USA. J Apicult Res 49:177–185. doi:10.3896/Ibra.1.49.2.06

    Article  CAS  Google Scholar 

  • Tarpy DR (2003) Genetic diversity within honeybee colonies prevents severe infections and promotes colony growth. Proc R Soc Lond B Biol Sci 270:99–103. doi:10.1098/rspb.2002.2199

    Article  Google Scholar 

  • Tavares A (2014) Statistical overview of the Canadian honey industry 2013. Government of Canada, Canada

    Google Scholar 

  • Wallberg A, Han F, Wellhagen G, Dahle B, Kawata M, Haddad N, Simoes ZLP, Allsopp MH, Kandemir I, de la Rua P, Pirk CW, Webster MT (2014) A worldwide survey of genome sequence variation provides insight into the evolutionary history of the honeybee Apis mellifera. Nat Genet 46:1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whitfield CW, Behura SK, Berlocher SH, Clark AG, Johnston JS, Sheppard WS, Smith DR, Suarez AV, Weaver DB, Tsutsui ND (2006) Thrice out of Africa: ancient and recent expansions of the honey bee, Apis mellifera. Science 314:642–645

    Article  CAS  PubMed  Google Scholar 

  • Winston ML (1992) The biology and management of Africanized honey bees. Annu Rev Entomol 37:173–193

    Article  Google Scholar 

Download references

Acknowledgments

This project was partially supported by a NSERC Discovery grant, a grant from the Bee Research Fund (Canadian Honey Council and the Canadian Association of Professional Apiculturists), and an Early Researcher Award from the Ontario Ministry of Research and Innovation (A.Z.). B.A.H. was supported by an NSERC Alexander Graham Bell Graduate Scholarship and York University Elia Research Scholarship. N.C. and B.P.O. received funding from Rural Industries Research and Development Corporation PRJ-007774. V.S., L.K., P.M. were supported by NSERC Undergraduate Student Research Awards and the Research at York program. We thank Génome Québec's Innovation Centre for their continued excellent service, Dr. Gard Otis (University of Guelph) for helpful discussion on the history of Buckfast breeding in Ontario, and Canadian beekeepers for their support and interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zayed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Evanno’s Method for the identification of K, following STRUCTURE analyses, showing optimal K=3 populations. (PDF 9 kb)

Figure 2

Average admixture (1 - maximum ancestry; e.g. if 70% C, 20% M, and 10% A, then admixture = 1-0.7) of each Canadian Province represented in our study. (PDF 5 kb)

Figure 3

Proportion of ancestry derived from each major lineage within each pooled Canadian province: Prairie Provinces (Alberta, Saskatchewan and Manitoba), Western Provinces and Territories (Yukon and British Columbia), Ontario and Quebec, and the Maritimes (Newfoundland, New Brunswick, and Nova Scotia). High C (low M) ancestry is more common in the Prairie Provinces than in the Western Provinces Quebec and Ontario, and Maritime Provinces, which had significantly lower C ancestry (PDF 5 kb)

Supplementary material 4 (DOCX 18 kb)

Supplementary material 5 (DOCX 91 kb)

Supplementary material 6 (TXT 0 kb)

Supplementary material 7 (TXT 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harpur, B.A., Chapman, N.C., Krimus, L. et al. Assessing patterns of admixture and ancestry in Canadian honey bees. Insect. Soc. 62, 479–489 (2015). https://doi.org/10.1007/s00040-015-0427-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-015-0427-1

Keywords

Navigation