Skip to main content
Log in

Benefits of aggregation in woodlice: a factor in the terrestrialization process?

  • Review Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

In the animal kingdom, living in group is driven by a tradeoff between the costs and the benefits of this way of life. This review focuses especially on the benefits of aggregation and crowding in woodlice (Crustacea: Isopoda: Oniscidea). Indeed, woodlice are well known to live in groups. Their aggregation behavior, as described in the early works of Allee, is regarded as a mechanism to prevent desiccation to which woodlice are extremely sensitive. However, it is now clear that there are additional benefits to aggregation in woodlice. Hence, this review addresses not only the limitation of water loss as the main factor explaining aggregation patterns, but also alternative explanations as reduction of oxygen consumption, increase in body growth, biotic stimuli for reproduction, better access to mates, possible shared defenses against predators, promotion of coprophagy as a secondary food source, sheltering behavior and the acquisition of internal symbionts. In addition, we place woodlice in the context of a terrestrialization process and propose that woodlice—the only suborder of Crustacea almost entirely composed of strictly terrestrial species—are a model taxon for studying the evolution of sociality through the transition from water to land. Further, we discuss other ultimate causes of aggregation preserved in terrestrial isopods in light of those explained in aquatic isopods and under the concept of exaptation. This knowledge could help understand, in this and other taxa, how the spatial closeness between conspecifics may promote the colonization of new environments and nonphysiological responses to climatic constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achouri M.S., Charfi-Cheikhrouha F. and Zimmer M. 2008. Reproductive patterns in syntopic terrestrial isopod species (Crustacea, Isopoda, Oniscidea) from Morocco. Pedobiologia 52: 127-137

    Google Scholar 

  • Alexander R. 1974. The evolution of social behavior. Annu. Rev. Ecol. Syst. 5: 325-383

    Google Scholar 

  • Allee W.C. 1926. Studies in animal aggregations: Causes and effects of bunching in land isopods. J. Exp. Zool. 45: 255-277

    Google Scholar 

  • Allee W.C. 1929. Studies in animal aggregations: natural aggregations of the isopod, Asellus communis. Ecology 10: 14-36

    Google Scholar 

  • Allee W.C. 1931. Animal Aggregations - A Study in General Sociology. University of Chicago Press, Illinois

  • Alldredge A.L. and Hammer W.M. 1980 Recurring aggregation of Zooplankton by a tidal current. Estuar. Coast. Mar. Sci. 10: 31-37

    Google Scholar 

  • Amé J.-M., Halloy J., Rivault C., Detrain C. and Deneubourg J.-L. 2006. Collegial decision making based on social amplification leads to optimal group formation. Proc. Natl Acad. Sci. USA 103: 5835-5840

    Google Scholar 

  • Aron S. and Passera L. 2000. Les Sociétés Animales: Evolution de la Coopération et Organisation Sociale. De Boeck Supérieur

  • Beauché F. and Richard F.-J. 2013. The best timing of mate search in Armadillidium vulgare (Isopoda, Oniscidea). PLoS ONE 8(3): e57737. doi:10.1371/journal.pone.0057737

  • Bell E.C. and Gosline J.M. 1997. Strategies for life in flow: Tenacity, morphometry, and probability of dislodgment of two Mytilus species. Mar. Ecol.-Prog. Ser. 159: 197-208

    Google Scholar 

  • Bellés X. 1991. Survival, opportunism and convenience in the processes of cave colonization by terrestrial faunas. Oecol. Aquat. 10: 325-335

    Google Scholar 

  • Bertram B.C.R. 1980. Vigilance and group size in ostriches. Anim. Behav. 28: 278-286

    Google Scholar 

  • Brockett B. and Hassall M. 2005. The existence of an Allee effect in populations of Porcellio scaber (Isopoda: Oniscidea). Eur. J. Soil. Biol. 41: 123-127

    Google Scholar 

  • Brody M.S., Edgar M.H. and Lawlor L.R. 1983. A cost of reproduction in a terrestrial isopod. Evolution 37: 653-655

    Google Scholar 

  • Broly P., Mullier R., Deneubourg J.-L. and Devigne C. 2012. Aggregation in woodlice: social interaction and density effects. ZooKeys 176: 133-144

    Google Scholar 

  • Broly P., Deville P. and Maillet S. 2013. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evol. Ecol. 27: 461-476

    Google Scholar 

  • Brusca R.C. and Gilligan M.R. 1983. Tongue replacement in a marine fish (Lutjanus guttatus) by a parasitic isopod (Crustacea: Isopoda). Copeia 3: 813-816

    Google Scholar 

  • Bursell E. 1955. The transpiration of terrestrial isopods. J. Exp. Biol. 32: 238-255

    Google Scholar 

  • Camazine S., Deneubourg J., Franks N., Sneyd J., Theraulaz G. and Bonabeau E. 2001. Self-Organization in Biological Systems. Princeton University Press, Princeton

  • Canonge S., Deneubourg J.-L. and Sempo G. 2011. Group living enhances individual resources discrimination: the use of public information by cockroaches to assess shelter quality. PLoS ONE 6(6): e19748. doi:10.1371/journal.pone.0019748

  • Carefoot T.H. 1973. Studies on the growth, reproduction, and life cycle of the supralittoral isopod Ligia pallasii. Mar. Biol. 18: 302-311

    Google Scholar 

  • Carefoot T.H. 1993. Physiology of terrestrial isopods. Comp. Biochem. Phys. A 106: 413-429

    Google Scholar 

  • Carefoot T., Mann M. and Kalwa S. 1991. The effect of desiccation on oxygen uptake in terrestrial isopod. In: Proc. 3 rd Int. Symp. Biol. Terr. Isopods (Juchault P. and Mocquard J.-P., Eds), Université de Poitiers, France, pp 157-164

  • Carefoot T.H. and Taylor B.E. 1995. Ligia: A prototypal terrestrial isopod. In: Terrestrial Isopod Biology (Alikhan A.M., Ed). Balkema, Rotterdam, pp 47-60

  • Carefoot T.H., Taylor B.E. and Brett K. 1998. A day in the life of an isopod: Time and energy allocations in the semiterrestrial Ligia pallasii. Isr. J. Zool. 44: 463-471

    Google Scholar 

  • Castillo M.E. and Kight S.L. 2005. Response of terrestrial isopods, Armadillidium vulgare and Porcellio laevis (Isopoda: Oniscidea) to the ant Tetramorium caespitum: morphology, behavior and reproductive success. Invertebr. Reprod. Dev. 47: 183-190

  • Caubet Y., Juchault P. and Mocquard J.-P. 1998. Biotic triggers of female reproduction in the terrestrial isopod Armadillidium vulgare Latr. (Crustacea Oniscidea). Ethol. Ecol. Evol. 10: 209-226

  • Caubet Y., O’Farrell G. and Lefebvre F. 2008. Geographical variability of aggregation in terrestrial isopods: What is the actual significance of such behaviour? In: Proc. Int. Symp. Terr. Isopod Biol.: ISTIB-07 (Zimmer M., Charfi-Cheikhrouha F. and Taiti S., Eds), Shaker Verlag, Aachen, pp 137-148

  • Cavill G.W.K., Clark D.V. and Hinterberger H. 1966. Some volatile constituents of terrestrial slaters. Aust. J. Chem. 19: 1495-1501

    Google Scholar 

  • Charabidze D., Bourel B. and Gosset D. 2011. Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci. Int. 211: 61-66

    Google Scholar 

  • Charfi-Cheikhrouha F., Zghidi W., Ould Yarba L. and Trilles J.P. 2000. Les Cymothoidae (Isopodes parasites de poissons) des côtes tunisiennes : écologie et indices parasitologiques. Syst. Parasitol. 46: 143-150

    Google Scholar 

  • Childress M.J. 2007. Comparative sociobiology of spiny lobsters. In: Evolutionary Ecology of Social and Sexual Systems - Crustaceans as Model Organisms (Duffy J. and Thiel M., Eds),. Oxford University Press, New York, pp 271-293

  • Cloudsley-Thompson J.L. 1956. Studies in diurnal rhythms. VI. Humidity responses and nocturnal activity in woodlice (Isopoda). J. Exp. Biol. 33: 576-582

    Google Scholar 

  • Cloudsley-Thompson J.L. 1959. Microclimate, diurnal rhythms and the conquest of the land by arthropods. Int. J. Biometeorol. 3: 1-8

    Google Scholar 

  • Cloudsley-Thompson J.L. and Constantinou C. 1987. Humidity reactions and aggregation in woodlice (Isopoda, Oniscoidea). Crustaceana 53: 43-48

    Google Scholar 

  • Clutton-Brock T. 2009. Cooperation between non-kin in animal societies. Nature 462: 51-57

    Google Scholar 

  • Colombini I., Fallaci M. and Chelazzi L. 2005. Micro-scale distribution of some arthropods inhabiting a Mediterranean sandy beach in relation to environmental parameters. Acta Oecol. 28: 249-265

    Google Scholar 

  • Conradt L. and Roper T.J. 2005. Consensus decision making in an animal. Trends Ecol. Evol. 20: 449-456

    Google Scholar 

  • Constantinou C. and Cloudsley-Thompson J.L. 1987. Water relations of some woodlice (Oniscidea) from arid and mesic environments. Qatar Univ. Sci. Bull. 7: 203-216

    Google Scholar 

  • Costa J.T. 2006. The other Insect Societies. Belknap Press of Harvard University Press, Cambridge

  • Courchamp F., Clutton-Brock T. and Grenfell B. 1999. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14: 405-410

    Google Scholar 

  • Courchamp F., Berec L. and Gascoigne J. 2008. Allee Effects in Ecology and Conservation. Oxford University Press, New York

  • Creel S. 1997. Cooperative hunting and group size: assumptions and currencies. Anim. Behav. 54: 1319-1324

    Google Scholar 

  • Csonka D., Halasy K., Szabó P., Mrak P., Strus J. and Hornung E. 2013. Eco-morphological studies on pleopodal lungs and cuticle in Armadillidium species (Crustacea, Isopoda, Oniscidea). Arthropod Struct. Dev. doi.org/10.1016/j.asd.2013.01.002

  • Danchin E., Giraldeau L.-A., Valone T.J. and Wagner R.H. 2004. Public information: from nosy neighbors to cultural evolution. Science 305: 487-491

    Google Scholar 

  • Dangerfield J.M. 1989. Competition and the effects of density on terrestrial isopods. Monit. Zool. Ital. 4: 411-423

    Google Scholar 

  • Dangerfield J.M. and Hassall M. 1994. Shelter site use and secondary sex ratios in the woodlice Armadillidium vulgare and Porcellio scaber (Crustacea: Isopoda). J. Zool. 233: 1-7

  • Dangerfield J.M. and Telford S.R. 1991. Distribution patterns of AphiIoscia maculicornis Budde-Lund (Crustacea, Oniscidea) in a moist tropical forest above Victoria Falls, Zimbabwe. In: Proc. 3 rd Int. Symp. Biol. Terr. Isopods (Juchault P. and Mocquard J.-P., Eds), Université de Poitiers, France, pp 57-63

  • Dangerfield J.M. and Telford S.R. 1995a. Tactics of reproduction and reproductive allocation in four species of woodlice from Southern Africa. J. Trop. Ecol. 11: 641-649

  • Dangerfield J.M. and Telford S.R. 1995b. Reproduction in woodlice: Flexibility to maximise individual fitness. In: Terrestrial Isopod Biology (Alikhan A.M., Ed). Balkema, Rotterdam, pp 69-82

  • Davis R.C. 1984. Effects of weather and habitat structure on the population dynamics of isopods in a dune grassland. Oikos 42: 387-395

    Google Scholar 

  • Davis R.C. and Sutton S.L. 1977. Spatial distribution and niche separation of woodlice and millipedes in a dune grassland ecosystem. Ecol. Bull. 25: 45-55

    Google Scholar 

  • Deidun A., Galea Bonavia F. and Schembri P.J. 2011. Distribution of Tylos spp. in the Maltese Islands and population dynamics of Tylos europaeus. J. Coastal Res. 64: 369-372

    Google Scholar 

  • Den Boer P.J. 1961. The ecological significance of activity patterns in the woodlouse Porcellio scaber Latr. (Isopoda). Arch. Néerl. Zool. 14: 283-409

  • Deneubourg J.-L. and Goss S. 1989. Collective patterns and decision-making. Ethol. Ecol. Evol. 1: 295-311

    Google Scholar 

  • Deneubourg J.-L., Lioni A. and Detrain C. 2002. Dynamics of aggregation and emergence of cooperation. Biol. Bull. 202: 262-267

    Google Scholar 

  • Deslippe R.J., Jelinski L. and Eisner T. 1996. Defense by use of a proteinaceous glue: woodlice vs. ants. Zoology 99: 205-210

    Google Scholar 

  • Devigne C., Broly P. and Deneubourg J.-L. 2011. Individual preferences and social interactions determine the aggregation of woodlice. PLoS ONE 6(2): e17389. doi: 10.1371/journal.pone.0017389

  • Dias N., Sprung M. and Hassall M. 2005. The abundance and life histories of terrestrial isopods in a salt marsh of the Ria Formosa lagoon system, southern Portugal. Mar. Biol. 147: 1343-1352

    Google Scholar 

  • Dias A.T.C., Krab E.J., Mariën J. et al. 2012a. Traits underpinning desiccation resistance explain distribution patterns of terrestrial isopods. Oecologia doi: 10.1007/s00442-012-2541-3

  • Dias N., Hassall M. and Waite T. 2012b. The influence of microclimate on foraging and sheltering behaviours of terrestrial isopods: implications for soil carbon dynamics under climate change. Pedobiologia 55: 137-144

  • Drahokoupilová T. and Tuf I.H. 2012. The effect of external marking on the behaviour of the common pill woodlouse Armadillidium vulgare. ZooKeys 176: 145-154

    Google Scholar 

  • Duffy J. 2007. Ecology and Evolution of Eusociality in Sponge-Dwelling Shrimp. In: Evolutionary Ecology of Social and Sexual Systems - Crustaceans as Model Organisms (Duffy J. and Thiel M., Eds), Oxford University Press, New York, pp 387-412

  • Durieux R., Rigaud T. and Médoc V. 2012. Parasite-induced suppression of aggregation under predation risk in a freshwater amphipod: Sociality of infected amphipods. Behav. Proc. 91: 207-213

    Google Scholar 

  • Ebisuno T., Takimoto M. and Takeda N. 1982. Preliminary characterization of the aggregation pheromone in the sow bug, Porcellionides pruinosus (Brandt) (Isopoda: Oniscoidea). Appl. Entomol. Zool. 17: 584-586

  • Edney E. 1951. The evaporation of water from woodlice and the millipede Glomeris. J. Exp. Biol. 28: 91-115

    Google Scholar 

  • Edney E. 1954. Woodlice and the land habitat. Biol. Rev. 29: 185-219

    Google Scholar 

  • Edney E. 1960. Terrestrial adaptations. In: The Physiology of Crustacea (Waterman T.H., Ed), Academic Press, New York, pp 367-393

  • Edney E. 1968. Transition from water to land in isopod crustaceans. Am. Zool. 8: 309-326

    Google Scholar 

  • Evans D.L. and Schmidt J.O. 1990. Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators. Suny press, Albany

  • Farr J.A. 1978. Orientation and social behavior in the supralittoral isopod Ligia exotica (Crustacea: Oniscoidea). Bull. Mar. Sci. 28: 659-666

  • Fenolio D.B. and Graening G.O. 2009. Report of a mass aggregation of isopods in an Ozark cave of Oklahoma with considerations of population sizes of stygobionts. Speleobiology Notes 1: 9-11

    Google Scholar 

  • Friedlander C.P. 1965. Aggregation in Oniscus asellus Linn. Anim. Behav. 13: 342-346

    Google Scholar 

  • Ganter P.F. 1984. The effects of crowding on terrestrial Isopods. Ecology 65: 438-445

    Google Scholar 

  • Gascoigne J. and Lipcius R.N. 2004. Allee effects in marine systems. Mar. Ecol.-Prog. Ser. 269: 49-59

    Google Scholar 

  • Gongalsky K.B., Savin F.A., Pokarzhevskii A.D. and Filimonova Z.V. 2005. Spatial distribution of isopods in an oak-beech forest. Eur. J. Soil. Biol. 41: 117-122

    Google Scholar 

  • Gorvett H. 1952. The tegumental glands in the land Isopoda, C. The lobed glands: the properties of their secretion and their mode of action. Q. J. Microsc. Sci. 93: 17-29

    Google Scholar 

  • Gorvett H. 1956. Tegumental glands and terrestrial life in woodlice. P. Zool. Soc. Lond. 126: 291-314

  • Gould S.J. and Vrba E.S. 1982. Exaptation - a missing term in the science of form. Paleobiology 8: 4-15

    Google Scholar 

  • Greenaway P. and Warburg M.R. 1998. Water fluxes in terrestrial isopods. Isr. J. Zool. 44: 473-486

    Google Scholar 

  • Grimaldi D.A. and Engel M.S. 2005. Evolution of the Insects. Cambridge University Press, New York

  • Grosholz E.D. 1992. Interactions of intraspecific, interspecific, and apparent competition with host-pathogen population dynamics. Ecology 73: 507-514

    Google Scholar 

  • Grundy A.J. and Sutton S.L. 1989. Year class splitting in the woodlouse Philoscia muscorum explained through studies of growth and survivorship. Holarct. Ecol. 12: 112-119

    Google Scholar 

  • Gunn D. 1937. The humidity reactions of the woodlouse, Porcellio scaber (Latreille). J. Exp. Biol. 14: 178-186

  • Hadley N.F. and Quinlan M.C. 1984. Cuticular transpiration in the isopod Porcellio laevis: chemical and morphological factors involved in its control. Symp. Zool. Soc. Lond. 53: 97-107

    Google Scholar 

  • Hadley N.F. and Warburg M.R. 1986. Water loss in three species of xeric-adapted isopods: correlations with cuticular lipids. Comp. Biochem. Phys. A 85: 669-672

    Google Scholar 

  • Hamaied S., Nasri-Ammar K. and Charfi-Cheikhrouha F. 2004. Phénologie de la reproduction d’une population naturelle de Armadillidium pelagicum Arcangeli, 1955 (Isopoda, Oniscidea). C.R. Biol. 327: 335-342

  • Hamilton W.D. 1971. Geometry for the Selfish Herd. J. Theor. Biol. 31: 295-311

    Google Scholar 

  • Hassall M. and Dangerfield J.M. 1990. Density-dependent processes in the population dynamics of Armadillidium vulgare (Isopoda: Oniscidae). J. Anim. Ecol. 59: 941-958

    Google Scholar 

  • Hassall M. and Rushton S.P. 1982. The role of coprophagy in the feeding strategies of terrestrial isopods. Oecologia 53: 374-381

    Google Scholar 

  • Hassall M., Tuck J.M. and James R. 2005. Effects of density and spatial heterogeneity on foraging behaviour and fitness correlates of Armadillidium vulgare (Isopoda Oniscidea). Ethol. Ecol. Evol. 17: 233-247

    Google Scholar 

  • Hassall M. and Tuck J.M. 2007. Sheltering behavior of terrestrial isopods in grasslands. Invertebr. Biol. 126: 46-56

    Google Scholar 

  • Hassall M., Edwards D.P., Carmenta R., Derhé M.A. and Moss A. 2010. Predicting the effect of climate change on aggregation behaviour in four species of terrestrial isopods. Behaviour 147: 151-164

    Google Scholar 

  • Hatchett S.P. 1947. Biology of the Isopoda of Michigan. Ecol. Monogr. 17: 47-80

    Google Scholar 

  • Heinrich B. 1988. Winter foraging at carcasses by three sympatric corvids, with emphasis on recruitment by the raven, Corvus corax. Behav. Ecol. Sociobiol. 23: 141-156

    Google Scholar 

  • Henf C., Leupolt B. and Zimmer M. 2008. Mate-recognition, mate-choice and monopolisation in isopods: an interhabitat comparison. In: Proc. Int. Symp. Terr. Isopod Biol.: ISTIB-07 (Zimmer M., Charfi-Cheikhrouha F. and Taiti S., Eds), Shaker Verlag, Aachen, pp 149-159

  • Holdich D.M. 1970. The distribution and habitat preferences of the Afro-European species of Dynamene (Crustacea: Isopoda). J. Nat. Hist. 4: 419-438

    Google Scholar 

  • Hornung E. 1984. The characteristics of the population of an Isopod species (Trachelipus nodulosus C.L. Koch) on a sandy soil grassland. Acta Biol. Szeged. 30: 153-158

    Google Scholar 

  • Hornung E. 1991. Isopod distribution in a heterogeneous grassland habitat. In: Proc. 3 rd Int. Symp. Biol. Terr. Isopods (Juchault P. and Mocquard J.-P., Eds), Université de Poitiers, France, pp 73-79

  • Hornung E. 2011. Evolutionary adaptation of oniscidean isopods to terrestrial life: Structure, physiology and behavior. Terr. Arthropod. Rev. 4: 95-130

    Google Scholar 

  • Hornung E. and Warburg M.R. 1995. Isopod distribution at different scaling levels. In: Terrestrial Isopod Biology (Alikhan A.M., Ed). Balkema, Rotterdam, pp 83-95

  • Hornung E. and Warburg M.R. 1996. Intra-habitat distribution of terrestrial isopods. Eur. J. Soil. Biol. 32: 179-185

    Google Scholar 

  • Hornung E. and Szlávecz K. 2003. Establishment of a Mediterranean isopod (Chaetophiloscia sicula Verhoeff, 1908) in a North American temperate forest. In: The Biology of Terrestrial Isopods V (Sfenthourakis S., de Araujo P.B., Hornung E., Schmalfuss H., Taiti S. and Szlávecz K., Eds), Crustaceana Monogr. pp 181-189

  • Howard H.W. 1980. The Distribution at Breeding Time of the Sexes of the Woodlouse, Armadillidium vulgare (Latreille, 1802) (Isopoda). Crustaceana 39: 52-58

  • Howarth F.G. 1980. The zoogeography of specialized cave animals: A bioclimatic model. Evolution 34: 394-406

    Google Scholar 

  • Ims R.A. 1990. On the adaptive value of reproductive synchrony as a predator-swamping strategy. Am. Nat. 136: 485-498

    Google Scholar 

  • Jassem W., Juchault P. and Mocquard J. 1982. Déterminisme de la reproduction saisonnière des femelles d’Armadillidium vulgare Latr. (Crustacé, Isopode, Oniscoïde). V. Rôle du mâle dans le cycle de reproductions des femelles. Ann. Sci. Nat. Zool. 4: 195-201

    Google Scholar 

  • Jeanson R. and Deneubourg J.-L.2007. Conspecific attraction and shelter selection in gregarious insects. Am. Nat. 170: 47-58

    Google Scholar 

  • Jeanson R., Rivault C., Deneubourg J.-L., Blancos S., Fourniers R., Jost C. and Theraulaz G. 2005. Self-Organized aggregation in cockroaches. Anim. Behav. 69: 169-180

    Google Scholar 

  • Jensen G.C. 1989. Gregarious settlement by megalopae of the porcelain crabs Petrolisthes cinctipes (Randall) and P. eriomerus Stimpson. J. Exp. Mar. Biol. Ecol. 131: 223-231

  • Judas M. and Hauser H. 1998. Patterns of isopod distribution: from small to large scale. Isr. J. Zool. 44: 333-343

    Google Scholar 

  • Karaman I.M. 2003. Macedonethes stankoi n. sp., a rhithral oniscidean isopod (Isopoda: Oniscidea: Trichoniscidae) from Macedonia. Org. Divers. Evol. 3: 239-240

    Google Scholar 

  • Kautz G., Zimmer M, and Topp W. 2002. Does Porcellio scaber (Isopoda: Oniscidea) gain from coprophagy? Soil. Biol. Biochem. 34: 1253-1259

  • Kight S.L. 2008. Reproductive ecology of terrestrial isopods (Crustacea: Oniscidea). Terr. Arthropod. Rev. 1: 95-110

    Google Scholar 

  • Kight S.L. and Nevo M. 2004. Female terrestrial isopods, Porcellio laevis Latreille (Isopoda: Oniscidea) reduce brooding duration and fecundity in response to physical stress. J. Kansas Entomol. Soc. 77: 285-287

  • Krause J. and Ruxton G.D. 2002. Living in Groups. Oxford University Press, USA

  • Kuenen D. and Nooteboom H. 1963. Olfactory orientation in some land-isopods (Oniscoidea, Crustacea). Entomol. Exp. et Appl. 6: 133-142

    Google Scholar 

  • Lawlor L.R. 1976a. Molting, growth and reproductive strategies in the terrestrial isopod, Armadillidium vulgare. Ecology 57: 1179-1194

  • Lawlor L.R. 1976b. Parental investment and offspring fitness in the terrestrial isopod Armadillidium vulgare (Latr.) (Crustacea: Oniscoidea). Evolution 30: 775-785

  • Lefebvre F. 2002. Stratégies de reproduction chez les crustacés Isopodes terrestres. Dissertation, Université de Poitiers

  • Lefebvre F. and Caubet Y. 1999. On the male-effect in the terrestrial Crustacean Armadillidium vulgare (Latreille, 1804). Invertebr. Reprod. Dev. 35: 55-64

    Google Scholar 

  • Lefebvre F., Limousin M. and Caubet Y. 2000. Sexual dimorphism in the antennae of terrestrial isopods: a result of male contests or scramble competition? Can. J. Zool. 78: 1987-1993

    Google Scholar 

  • Lefebvre F. and Caubet Y. 2010. Female-extended control over their reproductive investment: the role of early mating interactions on oocyte maturation in the terrestrial crustacean Armadillidium vulgare (Latreille, 1804). Invertebr. Reprod. Dev. 54: 177-186

    Google Scholar 

  • Li L. 2003. Hong Kong’s Isopods. In: Perspectives on Marine Environmental Change in Hong Kong and Southern China, 1977-2001 (Morton B., Ed). Hong Kong University Press, Hong Kong, pp 137-166

  • Lima S.T. and Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and prospectus. Can. J. of Zool. 68: 619-640

    Google Scholar 

  • Lindqvist O.V. 1968. Water regulation in terrestrial isopods, with comments on their behavior in a stimulus gradient. Ann. Zool. Fenn. 5: 279-311

    Google Scholar 

  • Lindqvist O.V. 1971. Evaporation in terrestrial isopods is determined by oral and anal discharge. Cell. Mol. Life Sci. 27: 1496-1498

    Google Scholar 

  • Lindqvist O.V. 1972. Components of water loss in terrestrial isopods. Physiol. Zool. 45: 316-324

    Google Scholar 

  • Linsenmair K.E. 1974. Some adaptations of the desert woodlouse Hemilepistus reaumuri (Isopoda, Oniscoidea) to desert environment. Verh. Ges. Oekol. 4: 183-185

    Google Scholar 

  • Linsenmair K.E. 1984. Comparative studies on the social behaviour of the desert isopod Hemilepistus reaumuri and of a Porcellio species. Symp. Zool. Soc. Lond. 53: 423-453

  • Linsenmair K.E. 1985. Individual and family recognition in subsocial arthropods, in particular in the desert isopod Hemilepistus reaumuri. Fortschr. Zool. 31: 411-436

    Google Scholar 

  • Linsenmair K.E. 2007. Sociobiology of terrestrial isopods. In: Evolutionary Ecology of Social and Sexual Systems - Crustaceans as Model Organisms (Duffy J. and Thiel M., Eds), Oxford University Press, New York, pp 339-364

  • Little C. 1983. The Colonisation of Land: Origins and Adaptations of Terrestrial Animals. Cambridge University Press, Cambridge

  • Mattern D. 2003. New aspects in the phylogeny of the Oniscidea inferred from molecular data. In: The Biology of Terrestrial Isopods V (Sfenthourakis S., de Araujo P.B., Hornung E., Schmalfuss H., Taiti S. and Szlávecz K., Eds), Crustaceana Monogr. pp 23-37

  • Mayes K.R. and Holdich D.M. 1975. Water exchange between woodlice and moist environments, with particular reference to Oniscus asellus. Comp. Biochem. Phys. A 51: 295-300

    Google Scholar 

  • McQueen D.J. and Steel C.G.H. 1980. The role of photoperiod and temperature in the initiation of reproduction in the terrestrial isopod Oniscus asellus Linnaeus. Can. J. Zool. 58: 235-240

    Google Scholar 

  • Mead F. and Gabouriaut D. 1988. Influence du groupement sur la formation du marsupium et la production des jeunes chez Helleria brevicornis (Ebner) (Isopoda, Oniscoidea, Tylidae). Crustaceana 54: 244-255

    Google Scholar 

  • Menzies R.J. and Widrig T.M. 1955. Aggregation by the marine wood-boring isopod, Limnoria. Oikos 6: 149-152

    Google Scholar 

  • Mocquard J.-P., Juchault P. and Souty-Grosset C. 1989. The role of environmental factors (temperature and photoperiod) in the reproduction of the terrestrial Isopod Armadillidium vulgare (Latreille, 1804). Monit. Zool. Ital. Monogr. 4: 455-475

    Google Scholar 

  • Møller A.P. and Legendre S. 2001. Allee effect, sexual selection and demographic stochasticity. Oikos 92: 27-34

    Google Scholar 

  • Moreau J. and Rigaud T. 2000. Operational sex ratio in terrestrial isopods: interaction between potential rate of reproduction and Wolbachia-induced sex ratio distortion. Oikos 91: 477-484

    Google Scholar 

  • Moreau J. and Rigaud T. 2002. The shape of calcium carbonate deposits as an external marker for female reproductive status in terrestrial isopods. J. Crust. Biol. 22: 353-356

    Google Scholar 

  • Moreau J., Seguin S., Caubet Y. and Rigaud T. 2002. Female remating and sperm competition patterns in a terrestrial crustacean. Anim. Behav. 64: 569-577

    Google Scholar 

  • Newell R.C., Wieser W. and Pye V.I. 1974. Factors affecting oxygen consumption in the woodlouse Porcellio scaber Latr. Oecologia 16: 31-51

  • Odendaal F.J., Eekhout S., Brown A.C. and Branch G.M. 1999. Aggregations of the sandy-beach isopod, Tylos granulatus: adaptation or incidental-effect? S. Afr. J. Zool. 34: 180-189

  • Paoletti M.G., Tsitsilas A., Thomson L.J., Taiti S. and Umina P.A. 2008. The flood bug, Australiodillo bifrons (Isopoda: Armadillidae): A potential pest of cereals in Australia? Appl. Soil. Ecol. 39: 76-83

    Google Scholar 

  • Paris O.H. 1963. The ecology of Armadillidium vulgare (Isopoda: Oniscoidea) in California grassland: food, enemies, and weather. Ecol. Monogr. 33: 1-22

    Google Scholar 

  • Paris O.H. 1965. Vagility of P32-labeled isopods in grassland. Ecology 46: 635-648

    Google Scholar 

  • Paris O.H. and Pitelka F.A. 1962. Population characteristics of the terrestrial isopod Armadillidium vulgare in California grassland. Ecology 43: 229-248

    Google Scholar 

  • Parrish J.K. and Hamner W.M. 1997. Animal Groups in Three Dimensions: How Species Aggregate. Cambridge University Press, United Kingdom

  • Parrish J.K. and Edelstein-Keshet L. 1999. Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284: 99-101

    Google Scholar 

  • Quadros A.F. and Araujo P.B. 2008. An assemblage of terrestrial isopods (Crustacea) in southern Brazil and its contribution to leaf litter processing. Rev. Bras. Zool. 25: 58-66

    Google Scholar 

  • Quinlan M.C. and Hadley N.F. 1983. Water relations of the terrestrial isopods Porcellio laevis and Porcellionides pruinosus (Crustacea, Oniscoidea). J. Comp. Physiol. B 151: 155-161

  • Regier J.C., Shultz J.W. and Kambic R.E. 2005. Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc. R. Soc. Lond. B. 272: 395-401

    Google Scholar 

  • Regier J.C., Shultz J.W., Zwick A. et al. 2010. Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463: 1079-1083

    Google Scholar 

  • Řezάč M., Pekάr S. and Lubin Y. 2008. How oniscophagous spiders overcome woodlouse armour. J. Zool. 275: 64-71

    Google Scholar 

  • Ritz D.A. 2000. Is social aggregation in aquatic crustaceans a strategy to conserve energy? Can. J. Fish. Aquat. Sci. 57: 59-67

    Google Scholar 

  • Robinson B.G., Larsen K.W. and Kerr H.J. 2011. Natal experience and conspecifics influence the settling behaviour of the juvenile terrestrial isopod Armadillidium vulgare. Can. J. Zool. 89: 661-667

    Google Scholar 

  • Rowe S., Hutchings J.A., Bekkevold D. and Rakitin A. 2004. Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.). ICES J. Mar. Sci. 61: 1144-1150

    Google Scholar 

  • Saito S. 1969. Energetics of isopod populations in a forest of central Japan. Res. Popul. Ecol. 11: 229-258

    Google Scholar 

  • Schliebe U. 1988. Aggregation bei terrestrischen Isopoden. M. D. Gesell. Allg. Ange. 6: 70-75

  • Schliebe U. 1991. Orientation to the cospecific in Oniscus asellus L. (Crustacea, Isopoda, Oniscidea). In: Proc. 3 rd Int. Symp. Biol. Terr. Isopods (Juchault P. and Mocquard J.-P., Eds), Université de Poitiers, France, pp 89-96

  • Schmalfuss H. 1984. Eco-morphological strategies in terrestrial isopods. Symp. Zool. Soc. Lond. 53: 49-63

    Google Scholar 

  • Schmalfuss H. 1998. Evolutionary strategies of the antennae in terrestrial isopods. J. Crust. Biol. 18: 10-24

    Google Scholar 

  • Schmalfuss H. 2003. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Naturk. A 654: 1-341

    Google Scholar 

  • Schmalfuss H. 2005. Utopioniscus kuehni n. gen., n. sp. (Isopoda: Oniscidea: Synocheta) from submarine caves in Sardinia. Stuttgarter Beitr. Naturk. A 677: 1-21

  • Schmidt C. 2008. Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthr. Syst. Phyl. 66: 191-226

    Google Scholar 

  • Schmidt C. and Wägele J.W. 2001. Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Acta Zool. (Stockh.) 82: 315-330

    Google Scholar 

  • Schultz G.A. 1984. Four species of Alloniscus Dana, 1854, from the West Coast of North America and Hawaii (Isopoda, Oniscoidea). Crustaceana 47: 149-167

    Google Scholar 

  • Schultz G.A. 1994. Typhlotricholigioides and Mexiconiscus from Mexico and Cylindroniscus from North America (Isopoda: Oniscidea: Trichoniscidae). J. Crust. Biol. 14: 763-770

    Google Scholar 

  • Shuster S.M. and Wade M.J. 1991. Female copying and sexual selection in a marine isopod crustacean, Paracerceis sculpta. Anim. Behav. 41: 1071-1078

    Google Scholar 

  • Sillen-Tullberg B. and Leimar O. 1988. The evolution of gregariousness in distasteful insects as a defense against predators. Am. Nat. 132: 723-734

    Google Scholar 

  • Smigel J.T. and Gibbs A.G. 2008. Conglobation in the pill bug, Armadillidium vulgare, as a water conservation mechanism. J. Insect Sci. 8: 1-9

    Google Scholar 

  • Sorensen E.M.B. and Burkett R.D. 1977. A population study of the isopod, Armadillidium vulgare, in Northeastern Texas. Southwest. Nat. 22: 375-387

  • Souty-Grosset C., Jassem W., Juchault P. and Mocquard J.-P. 1991. Coactions “male-female” and reproductive patterns in Armadillidium vulgare Latr. (Crustacea, Oniscidea). In: Proc. 3 rd Int. Symp. Biol. Terr. Isopods (Juchault P. and Mocquard J.-P., Eds), Université de Poitiers, France, pp 107-113

  • Spanier E., Cobb J.S. and James M.-J. 1993. Why are there no reports of eusocial marine crustaceans? Oikos 67: 573-576

    Google Scholar 

  • Spencer J.O. and Edney E.B. 1954. The absorption of water by woodlice. J. Exp. Biol. 31: 491-496

    Google Scholar 

  • Stange N., Scholz O. and Zimmer M. 2008. What renders a female Oniscus asellus attractive to a soliciting male? A priming approach. In: Proc. Int. Symp. Terr. Isopod Biol.: ISTIB-07 (Zimmer M., Charfi-Cheikhrouha F. and Taiti S., Eds), Shaker Verlag, Aachen, pp 161-166

  • Stephens P.A. and Sutherland W.J. 1999. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14: 401-405

    Google Scholar 

  • Sumpter D.J.T. 2006. The principles of collective animal behavior. Phil. Trans. R. Soc. Lond. B Biol. Sci. 361: 5-22

    Google Scholar 

  • Sumpter D.J.T. 2010. Collective Animal Behavior. Princeton University Press, New Jersey

  • Sunderland K.D., Hassall M. and Sutton S.L. 1976. The population dynamics of Philoscia muscorum (Crustacea, Oniscoidea) in a dune grassland ecosystem. J. Anim. Ecol. 45: 487-506

    Google Scholar 

  • Sunderland K.D. and Sutton S.L. 1980. A serological study of arthropod predation on woodlice in a dune grassland ecosystem. J. Anim. Ecol. 49: 987-1004

    Google Scholar 

  • Sutton S.L. 1968. The population dynamics of Trichoniscus pusillus and Philoscia muscorum (Crustacea, Oniscoidea) in limestone grassland. J. Anim. Ecol. 37: 425-444

    Google Scholar 

  • Sutton S.L. 1970. Predation on woodlice: an investigation using the precipitin test. Entomol. Exp. Appl. 13: 279-285

    Google Scholar 

  • Sutton S.L. 1972. Woodlice. Ginn & Company, London

  • Tabacaru I. and Danielopol D.L. 1996. Phylogénie des Isopodes terrestres. C.R. Acad. Sci. III-Vie 319: 71-80

    Google Scholar 

  • Taiti S., Arnedo M.A., Lew S.E. and Roderick G.K. 2003. Evolution of terrestriality in Hawaiian species of the genus Ligia (Isopoda, Oniscidea). In: The Biology of Terrestrial Isopods V (Sfenthourakis S., de Araujo P.B., Hornung E., Schmalfuss H., Taiti S. and Szlávecz K., Eds), Crustaceana Monogr. pp 85-102

  • Taiti S. 2004. Crustacea: Isopoda: Onsicidea (woodlice). In: Encyclopedia of Caves and Karst Science (Gunn J.C., Ed), Taylor & Francis Group, London, pp 547-551

  • Takeda N. 1980. The aggregation pheromone of some terrestrial isopod crustaceans. Cell. Mol. Life Sci. 36: 1296-1297

    Google Scholar 

  • Takeda N. 1984. The aggregation phenomenon in terrestrial isopods. Symp. Zool. Soc. Lond. 53: 381-404

    Google Scholar 

  • Tallamy D.W. and Wood T.K. 1986. Convergence patterns in subsocial insects. Annu. Rev. Entomol. 31: 369-390

    Google Scholar 

  • Tanaka K. and Nishi E. 2008. Habitat use by the gnathiid isopod Elaphognathia disolor living in terebellid polychaete tubes. J. Mar. Biol. Ass. UK 88: 57-63

    Google Scholar 

  • Thiel M. 1999. Reproductive biology of a wood-boring isopod, Sphaeroma terebrans, with extended parental care. Mar. Biol. 135: 321-333

    Google Scholar 

  • Thiel M. 2003. Reproductive biology of Limnoria chilensis: another boring peracarid species with extended parental care. J. Nat. Hist. 37: 1713-1726

    Google Scholar 

  • Thiel M. 2011. The evolution of sociality - peracarid crustaceans as model organisms. In: New Frontiers in Crustacean Biology (Asakura A. et al., Eds), Brill, Leiden, pp 285-297

  • Topp W., Kappes H., Kulfan J. and Zach P. 2006. Distribution pattern of woodlice (Isopoda) and millipedes (Diplopoda) in four primeval forests of the Western Carpathians (Central Slovacia). Biol. Fertil. Soils 38: 43-50

    Google Scholar 

  • Tuf I.H. and Jeřábková E. 2008. Diurnal epigeic activity of terrestrial isopods (Isopoda: Oniscidea). In: Proc. Int. Symp. Terr. Isopod Biol.: ISTIB-07 (Zimmer M., Charfi-Cheikhrouha F. and Taiti S., Eds), Shaker Verlag, Aachen, pp 167-172

  • Ullrich B., Vollmer M., Stöcker W. and Storch V. 1992. Hemolymph protein patterns and coprophagous behaviour in Oniscus asellus L. (Crustacea, Isopoda). Invert. Reprod. Dev. 21: 193-200

    Google Scholar 

  • Vader W. and De Wolf L. 1988. Biotope and biology of Armadillidium album Dollfuss, a terrestrial isopod of sandy beaches, in the SW Netherlands. Neth. J. Sea Res. 22: 175-183

    Google Scholar 

  • Vandel A. 1960. Faune de France 64 : les Isopodes Terrestres, première partie. Lechevallier, Paris

  • Vandel A. 1962. Faune de France 66 : les Isopodes Terrestres, deuxième partie. Lechevallier, Paris

  • Vandel A. 1965. Sur l’existence d’Oniscoïdes très primitifs menant une vie aquatique et sur le polyphylétisme des isopodes terrestres. Ann. Speleol. 20: 489-518

    Google Scholar 

  • Valone T.J. 2007. From eavesdropping on performance to copying the behavior of others: a review of public information use. Behav. Ecol. Sociobiol. 62: 1-14

    Google Scholar 

  • Verheggen F.J., Fagel Q., Heuskin S., Lognay G., Francis F. and Haubruge E. 2007. Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. J. Chem. Ecol. 33: 2148-2155

    Google Scholar 

  • Verne S., Moreau J., Caubet Y., Bouchon D., Johnson M. and Grandjean F. 2007. Male mating success during parturial intermoults in the terrestrial isopod Armadillidium vulgare revealed by the use of a microsatellite locus. J. Crust. Biol. 27: 217-219

    Google Scholar 

  • Waloff N. 1941. The mechanisms of humidity reactions of terrestrial isopods. J. Exp. Biol. 18: 115-135

    Google Scholar 

  • Wang Y., Brune A. and Zimmer M. 2007. Bacterial symbionts in the hepatopancreas of isopods: diversity and environmental transmission. Microbiol. Ecol. 61: 141-152

    Google Scholar 

  • Warburg M.R. 1965. The microclimate in the habitats of two isopod species in Southern Arizona. Am. Midl. Nat. 73: 363-375

    Google Scholar 

  • Warburg M.R. 1968. Behavioral adaptations of terrestrial isopods. Am. Zool. 8: 545-559

    Google Scholar 

  • Warburg M.R. 1993. Evolutionary Biology of Land Isopods. Springer-Verlag, Berlin

  • Warburg M.R. 2007. Distribution, reproduction, and relative abundance of oniscids: a long-term study on isopods (Isopoda: Oniscidea) in Israel. Crustaceana 80: 1223-1252

    Google Scholar 

  • Warburg M.R. 2012. The oniscid isopod female reproductive system and gestation, with a partial review. Invertebr. Reprod. Dev. 56: 87-110

    Google Scholar 

  • Warburg M.R. and Berkovitz K. 1978. Hygroreaction of normal and dessicated Armadillo officinalis isopods. Entomol. Exp. Appl. 2: 55-64

  • Warburg M.R., Linsenmair K.E. and Bercovitz K. 1984. The effect of climate on the distribution and abundance of isopods. Symp. Zool. Soc. Lond. 53: 339-367

    Google Scholar 

  • Wertheim B., van Baalen E.-J., Dicke M. and Vet L. 2005. Pheromone-mediated aggregation in nonsocial arthropods: An evolutionary ecological perspective. Annu. Rev. Entomol. 50: 321-346

    Google Scholar 

  • Wiens J.A. 1976. Population responses to patchy environments. Annu. Rev. Ecol. Syst. 7: 81-120

    Google Scholar 

  • Willmer P.G., Baylis M. and Simpson C.L. 1989. The roles of colour change and behavior in the hygrothermal balance of a littoral isopod, Ligia oceanica. Oecologia 78: 349-356

    Google Scholar 

  • Willows R.I. 1984. The population biology of Ligia oceanica (L.) (Crustacea: Oniscoidea). Dissertation, University of Leeds

  • Willows R.I. 1987. Population dynamics and life history of two contrasting populations of Ligia oceanica (Crustacea: Oniscidea) in the rocky supralittoral. J. Anim. Ecol. 56: 315-330

    Google Scholar 

  • Wilson E.O. 1975. Sociobiology, the New Synthesis. Belknap Press of Harvard University, Cambridge

  • Yamaguchi T. and Hasegawa M. 1996. Anti-predation mechanisms of soil animals against ants. Edaphologia 57: 31-36

    Google Scholar 

  • Yao M., Rosenfeld J., Attridge S., Sidhu S., Aksenov V. and Rollo C.D. 2009. The ancient chemistry of avoiding risks of predation and disease. Evol. Biol. 36: 267-281

    Google Scholar 

  • Zidar P., Hribar M., Žižek S. and Štrus J. 2012. Behavioural response of terrestrial isopods (Crustacea: Isopoda) to pyrethrins in soil or food. Eur. J. Soil Biol. 51: 51-55

    Google Scholar 

  • Zimmer M. and Topp W. 1998. Microorganisms and cellulose digestion in the gut of Porcellio scaber (Isopoda: Oniscidea). J. Chem. Ecol. 24: 1397-1408

    Google Scholar 

  • Zimmer M. 2003. Habitat and resource use by terrestrial isopods (Isopoda, Oniscidea). Crust. Monogr. 2: 243-261

    Google Scholar 

  • Zimmer M. 2004. Effects of temperature and precipitation on a flood plain isopod community: a field study. Eur. J. Soil Biol. 40: 139-146

    Google Scholar 

  • Zimmer-Faust R.K. and Spanier E. 1987. Gregariousness and sociality in spiny lobsters: implications for den habitation. J. Exp. Mar. Biol. Ecol. 105: 57-71

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Erzsébet Hornung, Dr. Martin Thiel and Dr. Martin Zimmer for their useful comments to improve the manuscript. We specially thank Zaya Maalem and Michiel B. Dijkstra for their helpful English reviews of the manuscript. P. Broly is supported by a FRIA Grant (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture). J.-L. Deneubourg is senior research associate from the F.R.S.-FNRS. This study has been carried out with support from the Catholic University of Lille in the framework of the fund-raising campaign “Ensemble Innovons”. This work was partly supported by the Grant “Action de Recherche Concertée”: Individual and collective issues in dispersal and aggregation: from proximal causes to ultimate consequences at contrasting scales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Broly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broly, P., Deneubourg, JL. & Devigne, C. Benefits of aggregation in woodlice: a factor in the terrestrialization process?. Insect. Soc. 60, 419–435 (2013). https://doi.org/10.1007/s00040-013-0313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-013-0313-7

Keywords

Navigation