Skip to main content

Advertisement

Log in

Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atkins S.D., Clark I.M., Pande S., Hirsch P.R. and Kerry B.R. 2005. The use of real-time PCR and species-specific primers for the identification and monitoring of Paecilomyces lilacinus. FEMS Microbiol. Ecol. 51: 257-264

    Google Scholar 

  • Bischoff J.F., Rehner S.A. and Humber R.A. 2009. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101: 512-530

  • Briano J., Jouvenaz D., Wojcik D., Cordo H. and Patterson R. 1995. Protozoan and fungal diseases in Solenopsis richteri and S. quinquecuspis (Hymenoptera, Formicidae) in Buenos Aires province, Argentina. Fla. Entomol. 78: 531-537

  • Chapuisat M., Bocherens S. and Rosset H. 2004. Variable queen number in ant colonies: no impact on queen turnover, inbreeding, and population genetic differentiation in the ant Formica selysi. Evolution 58: 1064-1072

    Google Scholar 

  • Chapuisat M., Oppliger A., Magliano P. and Christe P. 2007. Wood ants use resin to protect themselves against pathogens. Proc. R. Soc. Lond. B 274: 2013-2017

    Google Scholar 

  • Cremer S., Armitage S.A.O. and Schmid-Hempel P. 2007. Social Immunity. Curr. Biol. 17: R693-R702

  • Drummond J. and Pinnock D.E. 1990. Aflatoxin production by entomopathogenic isolates of Aspergillus parasiticus and Aspergillus flavus. J. Invertebr. Pathol. 55: 332-336

  • Ebert D. and Weisser W.W. 1997. Optimal killing for obligate killers: the evolution of life histories and virulence of semelparous parasites. Proc. R. Soc. Lond. B 264: 985-991

    Google Scholar 

  • Evans H.C., Elliot S.L. and Hughes D.P. 2011. Hidden diversity behind the zombie-ant fungus Ophiocordyceps unilateralis: four new species described from Carpenter ants in Minas Gerais, Brazil. Plos One 6

  • Fernandes E.K.K., Rangel D.E.N., Moraes A.M.L., Bittencourt V. and Roberts D.W. 2007. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J. Invertebr. Pathol. 96: 237-243

    Google Scholar 

  • Fernandez-Marin H., Zimmerman J.K., Rehner S.A. and Wcislo W.T. 2006. Active use of the metapleural glands by ants in controlling fungal infection. Proc. R. Soc. Lond. B 273: 1689-1695

    Google Scholar 

  • Fiedler Z. and Sosnowska D. 2007. Nematophagous fungus Paecilomyces lilacinus (Thom) Samson is also a biological agent for control of greenhouse insects and mite pests. BioControl 52: 547-558

    Google Scholar 

  • Frank S.A. 1996. Models of parasite virulence. Q. Rev. Biol. 71: 37-78

    Google Scholar 

  • Grijalba E.P., Villamizar L. and Cotes A.M. 2009. Evaluation of the stability of Paecilomyces sp. and Beauveria bassiana under ultraviolet radiation. Rev. Colomb. Entomol. 35: 1-6

  • Hegedus D.D. and Khachatourians G.G. 1996a. Detection of the entomopathogenic fungus Beauveria bassiana within infected migratory grasshoppers (Melanoplus sanguinipes) using polymerase chain reaction and DNA probe. J. Invertebr. Pathol. 67: 21-27

  • Hegedus D.D. and Khachatourians G.G. 1996b. Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single-strand conformation polymorphism analysis. J. Invertebr. Pathol. 67: 289-299

  • Hughes W.O.H. and Boomsma J.J. 2004. Let your enemy do the work: within-host interactions between two fungal parasites of leaf-cutting ants. Proc. R. Soc. Lond. B 271: S104-S106

  • Hughes W.O.H., Eilenberg J. and Boomsma J.J. 2002. Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc. R. Soc. Lond. B 269: 1811-1819

    Google Scholar 

  • Hughes W.O.H., Thomsen L., Eilenberg J. and Boomsma J.J. 2004. Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J. Invertebr. Pathol. 85: 46-53

    Google Scholar 

  • Humber R.A., Hansen K.S. and Wheeler M.M. 2009. Catalog of Species. USDA-ARS Biological Integrated Pest Management Research, Robert W. Holley Center for Agriculture and Health

  • Jaccoud D.B., Hughes W.O.H. and Jackson C.W. 1999. The epizootiology of a Metarhizium infection in mini-nests of the leaf-cutting ant Atta sexdens rubropilosa. Entomol. Exp. Appl. 93: 51-61

    Google Scholar 

  • Keller I. and Zettel J. 2001. Contribution to the autoecology of Formica selysi Bondroit, 1918 (Hymenoptera, Formicidae) in a mature steppe and a newly created alluvial zone at Pfynwald (Switzerland): I. Feeding ecology. Mitt. Schweiz. Entomol. Ges. 74: 183-193

    Google Scholar 

  • Keller S., Kessler P. and Schweizer C. 2003. Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 48: 307-319

  • Konstantopoulou M.A., Milonas P. and Mazomenos B.E. 2006. Partial purification and insecticidal activity of toxic metabolites secreted by a Mucor hiemalis strain (SMU-21) against adults of Bactrocera oleae and Ceratitis capitata (Diptera : Tephritidae). J. Econ. Entomol. 99: 1657-1664

  • Lacey L.A. (Ed) 1997. Manual of Techniques in Insect Pathology. San Diego: Academic Press

  • Maiden M.C.J., Bygraves J.A., Feil E., Morelli G., Russell J.E. et al. 1998. Multilocus sequence typing: A portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. USA 95: 3140-3145

    Google Scholar 

  • McGuire M.R., Ulloa M., Park Y.-H. and Hudson N. 2005. Biological and molecular characteristics of Beauveria bassiana isolates from California Lygus hesperus (Hemiptera: Miridae) populations. Biol. Control 33: 307-314

  • Meunier J. and Chapuisat M. 2009. The determinants of queen size in a socially polymorphic ant. J. Evol. Biol. 22: 1906-1913

    Google Scholar 

  • Meyling N.V. and Eilenberg J. 2007. Ecology of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae in temperate agroecosystems: Potential for conservation biological control. Biol. Control 43: 145-155

  • Meyling N.V., Lübeck M., Buckley E.P., Eilenberg J. and Rehner S.A. 2009. Community composition, host range and genetic structure of the fungal entomopathogen Beauveria in adjoining agricultural and seminatural habitats. Mol. Ecol. 18: 1282-1293

    Google Scholar 

  • Milner R.J., Staples J.A., Hartley T.R., Lutton G.G., Driver F. et al. 1998. Occurence of Metarhizium anisopliae in nests and feeding sites of Australian termites. Mycol. Res. 102: 216-220

    Google Scholar 

  • Møller A.P., Arriero E., Lobato E. and Merino S. 2009. A meta-analysis of parasite virulence in nestling birds. Biol. Rev. 84: 567-588

    Google Scholar 

  • Pantou M.P., Mavridou A. and Typas M.A. 2003. IGS sequence variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: excellent tools for isolate detection and phylogenetic analysis. Fungal Genet. Biol. 38: 159-174

    Google Scholar 

  • Parker S.R. 1997. Sequence Navigator. Multiple sequence alignment software. Methods Mol. Biol. 70: 145-154

    Google Scholar 

  • Pereira R.M. 2004. Occurrence of Myrmicinosporidium durum in red imported fire ant, Solenopsis invicta, and other new host ants in eastern United States. J. Invertebr. Pathol. 86: 38-44

    Google Scholar 

  • Pirali-Kheirabadi K., Haddadzadeh H., Razzaghi-Abyaneh M., Bokaie S., Zare R. et al. 2007. Biological control of Rhipicephalus (Boophilus) annulatus by different strains of Metarhizium anisopliae, Beauveria bassiana and Lecanicillium psalliotae fungi. Parasitol. Res. 100: 1297-1302

  • Poulsen M., Hughes W.O.H. and Boomsma J.J. 2006. Differential resistance and the importance of antibiotic production in Acromyrmex echinatior leaf-cutting ant castes towards the entomopathogenic fungus Aspergillus nomius. Insect. Soc. 53: 349-355

    Google Scholar 

  • R Development Core Team (2006) R: A Language and Environment for Statistical Computing

  • Reber A., Castella G., Christe P. and Chapuisat M. 2008. Experimentally increased group diversity improves disease resistance in an ant species. Ecol. Lett. 11: 682-689

    Google Scholar 

  • Reber A., Purcell J., Buechel S.D., Buri P. and Chapuisat M. 2011. The expression and impact of anti-fungal grooming in ants. J. Evol. Biol. 24: 954-964

    Google Scholar 

  • Rehner S.A. and Buckley E.P. 2003. Isolation and characterization of microsatellite loci from the entomopathogenic fungus Beauveria bassiana (Ascomycota: Hypocreales). Mol. Ecol. Notes 3: 409-411

    Google Scholar 

  • Rodrigues A., Silva A., Bacci M., Forti L.C. and Pagnocca F.C. 2010. Filamentous fungi found on foundress queens of leaf-cutting ants (Hymenoptera: Formicidae). J. Appl. Entomol. 134: 342-345

    Google Scholar 

  • Rosengaus R.B., Maxmen A.B., Coates L.E. and Traniello J.F.A. 1998. Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav. Ecol. Sociobiol. 44: 125-134

    Google Scholar 

  • Rosset H. and Chapuisat M. 2007. Alternative life-histories in a socially polymorphic ant. Evol. Ecol. 21: 577-588

    Google Scholar 

  • Santos A.V., de Oliveira B.L. and Samuels R.I. 2007. Selection of entomopathogenic fungi for use in combination with sub-lethal doses of imidacloprid: perspectives for the control of the leaf-cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). Mycopathologia 163: 233-240

    Google Scholar 

  • Schmid-Hempel P. 1998. Parasites in Social Insects. Princeton: Princeton University Press

  • Schwander T., Rosset H. and Chapuisat M. 2005. Division of labour and worker size polymorphism in ant colonies: the impact of social and genetic factors. Behav. Ecol. Sociobiol. 59: 215-221

    Google Scholar 

  • Therneu T.M., Grambsch P.M. and Pankratz V.S. 2003. Penalized survival models and frailty. J. Comput. Graph. Stat. 12: 156-175

    Google Scholar 

  • Tiganomilani M.S., Samson R.A., Martins I. and Sobral B.W.S. 1995. DNA markers for differentiating isolates of Paecilomyces lilacinus. Microbiology 141: 239-245

    Google Scholar 

  • Ugelvig L.V. and Cremer S. 2007. Social prophylaxis: Group interaction promotes collective immunity in ant colonies Curr. Biol. 17: 1967-1971

    Google Scholar 

  • Ugelvig L.V., Kronauer D.J.C., Schrempf A., Heinze J. and Cremer S. 2010. Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc. R. Soc. Lond. B 277: 2821-2828

    Google Scholar 

  • Wilson-Rich N., Spivak M. and Fefferman N.H. 2009. Genetic, individual, and group facilitation of disease resistance in insect societies Annu. Rev. Entomol. 54: 405-423

    Google Scholar 

  • Yang J.K., Tian B.Y., Liang L.M. and Zhang K.Q. 2007. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl. Microbiol. Biotechnol. 75: 21-31

    Google Scholar 

Download references

Acknowledgments

We thank Timothée Brutsch, Jessica Purcell and two anonymous reviewers for comments on the manuscript, Godefroy Devevey for help in the field, Jessica Purcell for sequencing the EF-1α gene region to identify the Metarhizium species and Marie Ballif for help in the laboratory. This study was supported by the Swiss National Science Foundation (grants 31003A_108263 and 31003A_125306 to MC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chapuisat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reber, A., Chapuisat, M. Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi . Insect. Soc. 59, 231–239 (2012). https://doi.org/10.1007/s00040-011-0209-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-011-0209-3

Keywords

Navigation