Skip to main content
Log in

Rectifiability of harmonic measure

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In the present paper we prove that for any open connected set \({\Omega\subset\mathbb{R}^{n+1}}\), \({n\geq 1}\), and any \({E\subset \partial \Omega}\) with \({\mathcal{H}^n(E)<\infty}\), absolute continuity of the harmonic measure \({\omega}\) with respect to the Hausdorff measure on E implies that \({\omega|_E}\) is rectifiable. This solves an open problem on harmonic measure which turns out to be an old conjecture even in the planar case \({n=1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa H.: Boundary harnack principle and martin boundary for a uniform domain. Journal of the Mathematical Society of Japan 53(1), 119–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aikawa H.: Equivalence between the boundary Harnack principle and the Carleson estimate. Mathematica Scandinavica 103, 61–76 (2008)

    MathSciNet  MATH  Google Scholar 

  3. M. Akman, M. Badger, S. Hofmann, and J. M. Martell. Rectifiability and elliptic measures on 1-sided NTA domains with Ahlfors–David regular boundaries (Preprint 2015). arXiv:1507.02039.

  4. Armitage D. H., Gardiner S. J.: Classical potential theory. Springer Monographs in Mathematics. Springer, London (2001)

    Book  Google Scholar 

  5. J. Azzam. Sets of absolute continuity for harmonic measure in NTA domains. Potential Analysis. arXiv:1410.2782. (To appear, Preprint 2014).

  6. J. Azzam, S. Hofmann, J.M. Martell, K. Nyström and T. Toro A new characterization of chord-arc domains. Journal of the European Mathematical Society (JEMS). arXiv:1406.2743. (Preprint 2014, To appear).

  7. J. Azzam, M. Mourgoglou, and X. Tolsa. Singular sets for harmonic measure on locally flat domains with locally finite surface measure. International Mathematics Research Notices. arXiv:1501.07585. (Preprint 2015, To appear).

  8. J. Azzam, M. Mourgoglou, and X. Tolsa. Rectifiability of harmonic measure in domains with porous boundaries. arXiv:1505.06088. (Preprint 2015).

  9. Badger M.: Null sets of harmonic measure on NTA domains: Lipschitz approximation revisited. Mathematische Zeitschrift 270(1–2), 241–262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. J. Bishop Some questions concerning harmonic measure. Partial differential equations with minimal smoothness and applications (Chicago, IL, 1990) IMA Vol. Math. Appl., vol. 42, Springer, New York, 1992, pp. 89–97.

  11. Bishop C. J., Jones P. W.: Harmonic measure and arclength. Annals of Mathematics (2) 132((3)), 511–547 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bennewitz B., Lewis J. L.: On weak reverse Hölder inequalities for nondoubling harmonic measures. Complex Variables, Theory and Application 49(7–9), 571–582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bourgain J.: On the Hausdorff dimension of harmonic measure in higher dimension. Inventiones Mathematicae 87(3), 477–483 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dahlberg B. E. J.: Estimates of harmonic measure. Archive for Rational Mechanics and Analysis 65(3), 275–288 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  15. David G., Jerison D.: Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals. Indiana University Mathematics Journal 39(3), 831–845 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. David G., Mattila P.: Removable sets for Lipschitz harmonic functions in the plane. Revista Matematica Iberoamericana 16(1), 137–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. G. David and S. Semmes, Analysis of and on uniformly rectifiable sets. In: Mathematical Surveys and Monographs, Vol. 38. American Mathematical Society, Providence (1993)

  18. J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover Publications, Inc., Mineola (2006). (Unabridged republication of the 1993 original).

  19. Helms L.L.: Potential Theory, 2nd edn. Universitext. Springer, London (2014)

    Book  Google Scholar 

  20. Hofmann S., Martell J.M.: Uniform rectifiability and harmonic measure I: uniform rectifiability implies Poisson kernels in \({L^{p}}\). Annales Scientifiques de l’Ecole Normale Superieure 47(3), 577–654 (2014)

    MathSciNet  MATH  Google Scholar 

  21. S. Hofmann, J.M. Martell. Uniform rectifiability and harmonic measure, IV: Ahlfors regularity plus Poisson kernels in \({L^p}\) impies uniform rectifiability. arXiv:1505.06499. (Preprint 2015).

  22. Hofmann S., Martell J.M., Mayboroda S.: Uniform rectifiability and harmonic measure III: Riesz transform bounds imply uniform rectifiability of boundaries of 1-sided NTA domains. International Mathematics Research Notices 10, 2702–2729 (2014)

    MathSciNet  MATH  Google Scholar 

  23. S. Hofmann, J.M. Martell, S. Mayboroda, X. Tolsa and A. Volberg. Absolute continuity between the surface measure and harmonic measure implies rectifiability. arXiv:1507.04409. (Preprint 2015).

  24. Hofmann S., Martell J.M., Uriarte-Tuero I.: Uniform rectifiability and harmonic measure, II: Poisson kernels in \({L^p}\) imply uniform rectifiability. Duke Mathematical Journal 8, 1601–1654 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jerison D. S., Kenig C. E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Advances in Mathematics 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jones P., Wolff T.: Hausdorff dimension of harmonic measures in the plane. Acta Mathematica 161(1–2), 131–144 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenig C., Toro T.: Harmonic measure on locally flat domains. Duke Mathematical Journal 87, 501–551 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kenig C., Toro T.: Free boundary regularity for harmonic measure and Poisson kernels. Annals of Mathematics 150(2), 369–454 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kenig C., Toro T.: Poisson kernel characterizations of Reifenberg flat chord arc domains. Annales Scientifiques de l’Ecole Normale Superieure (4) 36(3), 323–401 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Léger J.C.: Menger curvature and rectifiability. Annales of Mathematics 149, 831–869 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lavrent’ev M.: Boundary problems in the theory of univalent functions. American Mathematical Society Translations (2) 32, 1–35 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Makarov N.G.: On the distortion of boundary sets under conformal mappings. Proceedings London Mathematical Society (3) 51(2), 369–384 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Makarov N.G.: Harmonic measure and the Hausdorff measure.. (Russian) Doklady Akademii Nauk SSSR 280(3), 545–548 (1985)

    MathSciNet  MATH  Google Scholar 

  34. P. Mattila, Geometry of sets and measures in Euclidean spaces. In: Cambridge Studies in Advanced Mathematics. Fractals and rectifiability, Vol. 44. Cambridge University Press, Cambridge (1995).

  35. M. Mourgoglou Uniform domains with rectifiable boundaries and harmonic measure. arXiv:1505.06167. (Preprint 2015).

  36. Nazarov F., Tolsa X., Volberg A.: On the uniform rectifiability of A-regular measures with bounded Riesz transform operator: the case of codimension 1. Acta Mathematica 213(2), 237–321 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nazarov F., Tolsa X., Volberg A.: The Riesz transform Lipschitz harmonic functions. Publicacions Matematiques 58, 517–532 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Nazarov, S. Treil and A. Volberg. The Tb-theorem on non-homogeneous spaces that proves a conjecture of Vitushkin. CRM preprint No. 519 (2002), pp. 1–84. arXiv:1401.2479.

  39. F. and M. Riesz, Über die randwerte einer analtischen funktion. Compte Rendues du Quatrième Congrès des Mathématiciens Scandinaves, Stockholm 1916, Almqvists and Wilksels, Upsala (1920).

  40. Semmes S.: Analysis vs. geometry on a class of rectifiable hypersurfaces in \({\mathbb{R}^{n}}\). Indiana University Mathematics Journal 39(4), 1005–1035 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tolsa X.: Principal values for the Cauchy integral and rectifiability. Proceedings of the American Mathematical Society 128(7), 2111–2119 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  42. X. Tolsa. Analytic capacity, the Cauchy transform, and non-homogeneous Calderón–Zygmund theory. Progress in Mathematics, Vol. 307. Birkhäuser Verlag, Basel (2014).

  43. X. Tolsa. Rectifiable measures, square functions involving densities, and the Cauchy transform. Memoirs of the American Mathematical Society. arXiv:1408.6979. (Preprint 2014, To appear)

  44. A. Volberg Calderón–Zygmund capacities and operators on nonhomogeneous spaces. In: CBMS Regional Conference Series in Mathematics, Vol. 100. Amer. Math. Soc., Providence (2003).

  45. T. Wolff, Counterexamples with harmonic gradients in \({\mathbb{R}^3}\). Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991). Princeton Mathematics Series, Vol. 42. Princeton Univ. Press, Princeton, pp. 321–384, (1995).

  46. Wu J-M.: On singularity of harmonic measure in space. Pacific Journal of Mathematics 121(2), 485–496 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ziemer W. P.: Some remarks on harmonic measure in space. Pacific Journal of Mathematics 55, 629–637 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Tolsa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzam, J., Hofmann, S., Martell, J.M. et al. Rectifiability of harmonic measure. Geom. Funct. Anal. 26, 703–728 (2016). https://doi.org/10.1007/s00039-016-0371-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-016-0371-x

Navigation