Skip to main content
Log in

Stein’s method, logarithmic Sobolev and transport inequalities

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

We develop connections between Stein’s approximation method, logarithmic Sobolev and transport inequalities by introducing a new class of functional inequalities involving the relative entropy, the Stein kernel, the relative Fisher information and the Wasserstein distance with respect to a given reference distribution on \({\mathbb{R}^{d}}\). For the Gaussian model, the results improve upon the classical logarithmic Sobolev inequality and the Talagrand quadratic transportation cost inequality. Further examples of illustrations include multidimensional gamma distributions, beta distributions, as well as families of log-concave densities. As a by-product, the new inequalities are shown to be relevant towards convergence to equilibrium, concentration inequalities and entropic convergence expressed in terms of the Stein kernel. The tools rely on semigroup interpolation and bounds, in particular by means of the iterated gradients of the Markov generator with invariant measure the distribution under consideration. In a second part, motivated by the recent investigation by Nourdin, Peccati and Swan on Wiener chaoses, we address the issue of entropic bounds on multidimensional functionals F with the Stein kernel via a set of data on F and its gradients rather than on the Fisher information of the density. A natural framework for this investigation is given by the Markov Triple structure (E, μ, Γ) in which abstract Malliavin-type arguments may be developed and extend the Wiener chaos setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artstein S., Ball K., Barthe F., Naor A.: On the rate of convergence in the entropic central limit theorem. Probability Theory and Related Fields 129, 381–390 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. E. Azmoodeh, S. Campese, and G. Poly. Fourth moment theorems for Markov diffusion generators. Journal of Functional Analysis (to appear, 2013)

  3. E. Azmoodeh, D. Malicet, G. Mijoule, and G. Poly. Generalization of the Nualart-Peccati criterion. Annals of Probability (to appear, 2013)

  4. D. Bakry and M. émery. Diffusions hypercontractives. Séminaire de Probabilités XIX. In: Lecture Notes in Mathematics, Vol. 1123. Springer Berlin (1985), pp. 177–206

  5. D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators. In: Grundlehren der Mathematischen Wissenschaften, Vol. 348. Springer, Berlin (2014)

  6. Barbour A. D.: Stein’s method for diffusion approximations. Probability Theory and Related Fields 84, 297–322 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barron A., Johnson O.: Fisher information inequalities and the central limit theorem. Probability Theory and Related Fields 129, 391–409 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. J.-M. Bismut. Large deviations and the Malliavin calculus. In: Progress in Mathematics, Vol. 45. Birkhäuser, Boston (1984).

  9. Blachman N.: convolution inequality for entropy powers. IEEE Transactions on Information Theory 11, 267–271 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bobkov S., Chistyakov G., Götze F.: Rate of convergence and Edgeworth-type expansion in the entropic central limit theorem. Annals of Probability 41, 2479–2512 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bobkov S., Chistyakov G., Götze F: Fisher information and the central limit theorem. Probability Theory and Related Fields 159, 1–59 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bobkov S., Chistyakov G., Götze. F.: Berry-Esseen bounds in the entropic central limit theorem. Probability Theory and Related Fields 159, 435–478 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  13. S. Boucheron, G. Lugosi, and P. Massart. concentration inequalities: a nonasymptotic theory of independence. Oxford University Press, Oxford (2013).

  14. Cacoullos T., Papathanasiou V., Utev S.: Variational inequalities with examples and an application to the central limit theorem. Annals of Probability 22, 1607–1618 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Carbery A., Wright J.: Distributional and L q norm inequalities for polynomials over convex bodies in \({\mathbb{R}^{n}}\). Mathematical Research Letters 8, 233–248 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chatterjee S.: Stein’s method for concentration inequalities. Probability Theory and Related Fields 138, 305–321 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Chatterjee S.: Fluctuation of eigenvalues and second order Poincaré inequalities. Probability Theory and Related Fields 143, 1–40 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Chatterjee S.: A new approach to strong embeddings. Probability Theory and Related Fields 152, 231–264 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. L. H. Y. Chen, L. Goldstein, and Q.-M. Shao. Normal approximation by Stein’s method. In: Probability and its Applications. Springer, Berlin (2011)

  20. Diaconis P., Zabell S.: Closed form summation for classical distributions: variations on a theme of de Moivre. Statistical Science 6, 284–302 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Goldstein L., Reinert G.: Stein’s method and the zero bias transformation with application to simple random sampling. Annals of Applied Probability 7, 935–952 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. L. Goldstein and G. Reinert. Zero biasing in one and higher dimensions, and applications. Stein’s method and applications. In: Lecture Notes Series. Institute for Mathematical Sciences. National University of Singapore, Vol. 5. Singapore University Press (2005), pp. 1–18.

  23. Götze F.: On the rate of convergence in the multivariate CLT. Annals of Probability 19, 724–739 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  24. O. Johnson. information theory and the central limit theorem. Imperial College Press, UK (2004).

  25. Ledoux M.: L’algèbre de Lie des gradients itérés d’un générateur markovien—développements de moyennes et entropies. Ann. Sci. école Norm. Sup. 28, 435–460 (1995)

    MATH  MathSciNet  Google Scholar 

  26. M. Ledoux. The concentration of measure phenomenon. In: Mathematical Surveys and MonographsVol. 89. American Mathematical Society, Providence (2001).

  27. Ledoux M.: Chaos of a Markov operator and the fourth moment condition. Annals of Probability 40, 2439–2459 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Mackey L., Jordan M. I., Chen R.Y., Farrell B., Tropp J. A.: Matrix concentration inequalities via the method of exchangeable pairs. Annals of Probability 42, 906–945 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Milman E.: the role of convexity in isoperimetry, spectral gap and concentration. Inventiones Mathematicae 177, 1–43 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nourdin I., Peccati G.: Non-central convergence of multiple integrals. Annals of Probability 37, 1412–1426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. I. Nourdin and G. Peccati. Normal approximations with Malliavin calculus: from Stein’s method to universality. In: Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2012).

  32. Nourdin I., Peccati G., Peccati G.: Entropy and the fourth moment phenomenon. Journal of Functional Analysis 266, 3170–3207 (2013)

    Article  MathSciNet  Google Scholar 

  33. I. Nourdin, G. Peccati, and Y. Swan. Integration by parts and representation of information functionals. In: Proceedings of the 2014 IEEE International Symposium on Information Theory (ISIT). Honolulu, HI (2014), pp. 2217–2221.

  34. Nourdin I., Rosiński J.: Asymptotic independence of multiple Wiener-Itô integrals and the resulting limit laws.. Annals of Probability 42, 497–526 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Nualart. The Malliavin calculus and related topics, 2nd Edition. In: Probability and its Applications. Springer, Berlin (2006).

  36. Nualart D., Ortiz-Latorre S.: Central limit theorems for multiple stochastic integrals and Malliavin calculus.. Stochastic Processes and their Applications 118, 614–628 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Otto F., Villani C.: Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality.. Journal of Functional Analysis 173, 361–400 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. G. Reinert. Three general approaches to Stein’s method. An introduction to Stein’s method. In: Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. Vol. 4. Singapore University Press, Singapore (2005), pp. 183–221.

  39. Stam A.: Some inequalities satisfied by the quantities of information of Fisher and Shannon. Information and Control 2, 101–112 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  40. C. Stein. Approximate computation of expectations. In:Institute of Mathematical Statistics Lecture Notes—Monograph Series, Vol. 7. Institute of Mathematical Statistics (1986).

  41. Talagrand M.: Transportation cost for Gaussian and other product measures. Geometric and Functional Analysis 6, 587–600 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  42. C. Villani. Optimal transport. Old and new. In: Grundlehren der Mathematischen Wissenschaften, Vol. 338. Springer, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Ledoux.

Additional information

Ivan Nourdin was partially supported by the ANR Grant ANR-10-BLAN-0121. Giovanni Peccati was partially supported by the Grant F1R-MTH-PUL-12PAMP (PAMPAS) from Luxembourg University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledoux, M., Nourdin, I. & Peccati, G. Stein’s method, logarithmic Sobolev and transport inequalities. Geom. Funct. Anal. 25, 256–306 (2015). https://doi.org/10.1007/s00039-015-0312-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-015-0312-0

Keywords and phrases

Mathematics Subject Classification

Navigation