Skip to main content
Log in

Limits of locally–globally convergent graph sequences

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

The colored neighborhood metric for sparse graphs was introduced by Bollobás and Riordan [BR11]. The corresponding convergence notion refines a convergence notion introduced by Benjamini and Schramm [BS01]. We prove that even in this refined sense, the limit of a convergent graph sequence (with uniformly bounded degree) can be represented by a graphing. We study various topics related to this convergence notion such as: Bernoulli graphings, factor of i.i.d. processes and hyperfiniteness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Aldous and R. Lyons. Processes on unimodular random networks, Electron. J. Probab. (Paper 54) 12 (2007), 1454–1508.

    Google Scholar 

  2. Abert M., Weiss B.: Bernoulli actions are weakly contained in any free action.. Ergodic theory and dynamical systems 33, 323–333 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Alon. Eigenvalues and expanders, Combinatorica 6 (1986), 83–96.

  4. N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs and superconcentrators, J. Combinatorial Theory B 38 (1985), 73–88.

    Google Scholar 

  5. Alon N., Spencer J.: The Probabilistic Method. Wiley-Interscience, New York (2000)

    Book  MATH  Google Scholar 

  6. I. Benjamini and O. Schramm. Recurrence of distributional limits of finite planar graphs, Electronic J Probab (paper no. 23) 6 (2001), 1–13.

  7. I. Benjamini, O. Schramm and A. Shapira: Every Minor-Closed Property of Sparse Graphs is Testable, Advances in Math. 223 (2010), 2200–2218.

  8. B. Bollobas and O. Riordan. Sparse graphs: Metrics and random models, Rand. Struc. Alg. 39 (2011), 1–38.

    Google Scholar 

  9. Borgs C., Chayes J., Lovász L.: Moments of Two-Variable Functions and the Uniqueness of Graph Limits. Geom. Func. Anal. 19, 1597–1619 (2010)

    Article  MATH  Google Scholar 

  10. Borgs C., Chayes J.T., Kahn J., Lovász L.: Left and right convergence of graphs with bounded degree. Random Struc. Alg. 42, 1–28 (2013)

    Article  MATH  Google Scholar 

  11. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi. Convergent graph sequences I: Subgraph frequencies, metric properties, and testing, Advances in Math. 219 (2008), 1801–1851.

  12. C. Borgs, J.T. Chayes, L. Lovász, V.T. Sós and K. Vesztergombi. Convergent graph sequences II: Multiway Cuts and Statistical Physics, Annals of Math. 176 (1912), 151–219.

    Google Scholar 

  13. G. Elek and G. Lippner. Borel oracles. An analytical approach to constant-time algorithms, Proc. Amer. Math. Soc. 138 (2010), 2939–2947.

    Google Scholar 

  14. Elek G.: On limits of finite graphs. Combinatorica 27, 503–507 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. G. Elek. The combinatorial cost, Enseign. Math. 53 (2007), 225–235.

  16. Elek G.: Finite graphs and amenability. J. of Func. Anal. 263, 2593–2614 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Elek G., Szegedy B.: A measure-theoretic approach to the theory of dense hypergraphs. Adv. in Math. 231, 1731–1772 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Gamarnik and M. Sudan. Limits of local algorithms over sparse random graphs, (2013) http://arxiv.org/abs/1304.1831

  19. Eli Glasner. Ergodic Theory via Joinings, Amer. Math. Soc. (2003).

  20. A. Hassidim, J.A. Kelner, H.N. Nguyen and K. Onak. Local Graph Partitions for Approximation and Testing, In: FOCS ’09, 50th Ann. IEEE Symp. on Found. Comp. Science, IEEE, New York, (2009), pp. 22–31.

  21. A.S. Kechris. Global aspects of ergodic group actions, Math. Surveys and Monographs 160, Amer. Math. Soc., Providence, R.I. (2010).

  22. A. Kechris and B.D. Miller. Topics in orbit equivalence theory, Lecture Notes in Mathematics 1852. Springer-Verlag, Berlin, 2004.

  23. Kechris A., Solecki S., Todorcevic S.: Borel chromatic numbers. Advances in Mathematics 141, 1–44 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. L. Lovász. Large networks and graph limits, Amer. Math. Soc., Providence, R.I. (2012).

  25. Lovász L., Szegedy B.: Limits of dense graph sequences. J. Comb. Theory B 96, 933–957 (2006)

    Article  MATH  Google Scholar 

  26. Lovász L., Szegedy B.: Szemerédi’s Lemma for the analyst. Geom. Func. Anal. 17, 252–270 (2007)

    Article  MATH  Google Scholar 

  27. Lovász L., Vesztergombi K.: Nondeterministic graph property testing. Comb. Prob. and Comput. 22, 749–762 (2013)

    Article  MATH  Google Scholar 

  28. Schramm O.: Hyperfinite graph limits. Elect. Res. Announce. Math. Sci. 15, 17–23 (2008)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Lovász.

Additional information

Research of H.H. was supported by an NSERC and an FQRNT grant. Research of L.L. was supported by ERC Grant No. 227701 and OTKA grant No. CNK 77780. Research of B.Sz. was supported by an NSERC grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatami, H., Lovász, L. & Szegedy, B. Limits of locally–globally convergent graph sequences. Geom. Funct. Anal. 24, 269–296 (2014). https://doi.org/10.1007/s00039-014-0258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0258-7

Keywords

Navigation