Skip to main content
Log in

Markov type and threshold embeddings

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

For two metric spaces X and Y, say that X threshold-embeds into Y if there exist a number K > 0 and a family of Lipschitz maps \({\{\varphi_{\tau} : X \to Y : \tau > 0\}}\) such that for every \({x,y \in X}\),

$$d_X(x, y) \geq \tau \implies d_Y(\varphi_\tau (x),\varphi_\tau (y)) \geq \|{\varphi}_\tau\|_{\rm Lip}\tau/K,$$

where \({\|{\varphi}_{\tau}\|_{\rm Lip}}\) denotes the Lipschitz constant of \({\varphi_{\tau}}\). We show that if a metric space X threshold-embeds into a Hilbert space, then X has Markov type 2. As a consequence, planar graph metrics and doubling metrics have Markov type 2, answering questions of Naor, Peres, Schramm, and Sheffield. More generally, if a metric space X threshold-embeds into a p-uniformly smooth Banach space, then X has Markov type p. Our results suggest some non-linear analogs of Kwapien’s theorem. For instance, a subset \({X \subseteq L_1}\) threshold-embeds into Hilbert space if and only if X has Markov type 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharoni I., Maurey B., Mityagin. B. S.: Uniform embeddings of metric spaces and of Banach spaces into Hilbert spaces. Israel Journal of Mathematics. 3(52), 251–265 (1985)

    Article  MathSciNet  Google Scholar 

  2. Assouad P.: Plongements lipschitziens dans R n. Bulletin de la Société Mathématique de France. 4(111), 429–448 (1983)

    MathSciNet  Google Scholar 

  3. Ball K.: Markov chains, Riesz transforms and Lipschitz maps. Geometric and Functional Analysis. 2(2), 137–172 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Brinkman, A. Karagiozova, and J. R. Lee. Vertex cuts, random walks, and dimension reduction in series-parallel graphs. In: STOC(2007), pp. 621–630.

  5. Y. Benyamini and J. Lindenstrauss. Geometric Nonlinear Functional Analysis, vol. 1. American Mathematical Society Colloquium Publications, vol. 48. American Mathematical Society, Providence (2000).

  6. Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric Ramsey-type phenomena. Annals of Mathematics (2), (2)162 (2005), 643–709

  7. Bourgain J.: On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics. 1-2(52), 46–52 (1985)

    Article  MathSciNet  Google Scholar 

  8. Bourgain J.: The metrical interpretation of superreflexivity in Banach spaces. Israel Journal of Mathematics. 2(56), 222–230 (1986)

    Article  MathSciNet  Google Scholar 

  9. Burkholder D. L.: Distribution function inequalities for martingales. Annals of Probability. 1, 19–42 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  10. C. Chidume. Geometric Properties of Banach Spaces and Nonlinear Iterations. Lecture Notes in Mathematics, vol. 1965. Springer-Verlag London Ltd., London (2009).

  11. J. Cheeger and B. Kleiner. Differentiating maps into L 1, and the geometry of BV functions. Annals of Mathematics (2), (2)171 (2010), 1347–1385.

  12. R. Durrett. Probability: Theory and Examples, 2nd edn. Duxbury Press, Belmont (1996).

  13. P. Enflo. Uniform structures and square roots in topological groups. I, II. Israel Journal of Mathematics 8 (1970), 230–252, 253–272.

    Google Scholar 

  14. A. Gupta, R. Krauthgamer, and J. R. Lee. Bounded geometries, fractals, and low-distortion embeddings. In: 44th Symposium on Foundations of Computer Science (2003), pp. 534–543.

  15. Gupta A., Newman I., Rabinovich Y., Sinclair A.: Cuts, trees and l 1-embeddings of graphs. Combinatorica. 2(24), 233–269 (2004)

    Article  MathSciNet  Google Scholar 

  16. Hanner O.: On the uniform convexity of L p and l p. Arkiv för Matematik. 3, 239–244 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Krauthgamer, J. R. Lee, M. Mendel, and A. Naor. Measured descent: A new embedding method for finite metrics. Geometric and Functional Analysis, (4)15 (2005), 839–858.

    Google Scholar 

  18. P. Klein, S. A. Plotkin, and S. Rao. Excluded minors, network decomposition, and multicommodity flow. In: 25th Annual ACM Symposium on Theory of Computing (1993), pp. 682–690.

  19. Kallenberg O., Sztencel R.: Some dimension-free features of vector-valued martingales. Probability Theory and Related Fields. 2(88), 215–247 (1991)

    Article  MathSciNet  Google Scholar 

  20. S. Kwapień and W. A. Woyczyński. Random Series and Stochastic Integrals: Single and Multiple. Probability and Its Applications. Birkhäuser Boston Inc., Boston (1992).

  21. S. Kwapień. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Mathematica, 44 (1972), 583–595. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI.

  22. T. J. Laakso. Plane with A -weighted metric not bi-Lipschitz embeddable to \({\mathbb{R}^N}\). Bulletin of the London Mathematical Society, (6)34 (2002), 667–676.

  23. J. R. Lee. On distance scales, embeddings, and efficient relaxations of the cut cone. In: SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms. (2005), pp. 92–101, Society for Industrial and Applied Mathematics. Philadelphia, PA, USA.

  24. Linial N., Magen A., Naor A.: Girth and Euclidean distortion. Geometric and Functional Analysis. 2(12), 380–394 (2002)

    Article  MathSciNet  Google Scholar 

  25. J. R. Lee, M. Mendel, and A. Naor. Metric structures in L 1: dimension, snowflakes, and average distortion. European Journal of Combinatorics, (8)26 (2005), 1180–1190.

    Google Scholar 

  26. Lee J.R., Naor A.: Extending Lipschitz functions via random metric partitions. Inventiones mathematicae. 1(160), 59–95 (2005)

    Article  MathSciNet  Google Scholar 

  27. J. R. Lee and A. Naor. L p metrics on the Heisenberg group and the Goemans-Linial conjecture. In: FOCS (2006), pp. 99–108.

  28. U. Lang and T. Schlichenmaier. Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. International Mathematics Research Notices, (58) (2005), 3625–3655.

    Google Scholar 

  29. J. R. Lee and A. Sidiropoulos. Genus and the geometry of the cut graph. In: SODA (2010), pp. 193–201.

  30. J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. II. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97. Springer, Berlin (1979). Function spaces.

  31. B. Maurey. Thít eorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L p. Société Mathématique de France, Paris (1974). With an English summary, Astérisque, No. 11.

  32. Mendel M., Naor A.: Euclidean quotients of finite metric spaces. Advances in Mathematics. 2(189), 451–494 (2004)

    Article  MathSciNet  Google Scholar 

  33. M. Mendel and A. Naor. Some applications of Ball’s extension theorem. Proceedings of the American Mathematical Society, (9)134 (2006), 2577–2584 (electronic).

  34. M. Mendel and A. Naor. Metric cotype. Annals of Mathematics (2), (1)168 (2008), 247–298.

  35. M. Mendel and A. Naor. Nonlinear spectral calculus and super-expanders. arXiv:1207.4705, 2012.

  36. A. Naor. An introduction to the Ribe program. To appear, Japanese Journal of Mathematics. arXiv:1207.4705, 2012.

    Google Scholar 

  37. Naor A., Peres Y., Schramm O., Sheffield S.: Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces. Duke Mathematical Journal. 1(134), 165–197 (2006)

    Article  MathSciNet  Google Scholar 

  38. Newman I., Rabinovich Y.: A lower bound on the distortion of embedding planar metrics into Euclidean space. Discrete and Computational Geometry. 1(29), 77–81 (2003)

    MathSciNet  Google Scholar 

  39. A. Naor and G. Schechtman. Remarks on non linear type and Pisier’s inequality. Journal für die reine und angewandte Mathematik, 552 (2002), 213–236.

    Google Scholar 

  40. Naor A., Silberman L.: Poincaré inequalities, embeddings, and wild groups. Compositio Mathematica. 5(147), 1546–1572 (2011)

    Article  MathSciNet  Google Scholar 

  41. P. Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Annals of Mathematics (2), (1)129 (1989), 1–60.

  42. G. Pisier. Martingales with values in uniformly convex spaces. Israel Journal of Mathematics, (3–4)20 (1975), 326–350.

  43. N. L. Randrianarivony. Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space. Proceedings of the American Mathematical Society, (5)134 (2006), 1315–1317 (electronic).

    Google Scholar 

  44. S. Rao. Small distortion and volume preserving embeddings for planar and Euclidean metrics. In: Proceedings of the 15th Annual Symposium on Computational Geometry (1999), pp. 300–306. ACM.

  45. Semmes S.: On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A -weights. Revista Matemática Iberoamericana. 2(12), 337–410 (1996)

    Article  Google Scholar 

  46. Xu Z. B., Roach G. F.: Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. Journal of Mathematical Analysis and Applications. 1(157), 189–210 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James R. Lee.

Additional information

J. Ding: Research partially supported by NSF Grant DMS-1313596.

J. R. Lee: Research partially supported by NSF Grant CCF-0915251 and a Sloan Research Fellowship.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, J., Lee, J.R. & Peres, Y. Markov type and threshold embeddings. Geom. Funct. Anal. 23, 1207–1229 (2013). https://doi.org/10.1007/s00039-013-0234-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0234-7

Keywords

Navigation