Skip to main content
Log in

Geometric, topological and differentiable rigidity of submanifolds in space forms

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let M be an n-dimensional submanifold in the simply connected space form F n+p(c) with c + H 2 > 0, where H is the mean curvature of M. We verify that if M n(n ≥ 3) is an oriented compact submanifold with parallel mean curvature and its Ricci curvature satisfies Ric M ≥ (n − 2)(c + H 2), then M is either a totally umbilic sphere, a Clifford hypersurface in an (n + 1)-sphere with n = even, or \({\mathbb{C}P^{2} \left(\frac{4}{3}(c + H^{2})\right) {\rm in} S^{7} \left(\frac{1}{\sqrt{c + H^{2}}}\right)}\). In particular, if Ric M > (n − 2)(c + H 2), then M is a totally umbilic sphere. We then prove that if M n(n ≥ 4) is a compact submanifold in F n+p(c) with c ≥ 0, and if Ric M > (n − 2)(c + H 2), then M is homeomorphic to a sphere. It should be emphasized that our pinching conditions above are sharp. Finally, we obtain a differentiable sphere theorem for submanifolds with positive Ricci curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews B., Baker C.: Mean curvature flow of pinched submanifolds to spheres. Journal of Differential Geomentry. 85, 357–396 (2010)

    MathSciNet  MATH  Google Scholar 

  2. M. Berger Riemannian geometry during the second half of the twentieth century. University Lecture Series, vol. 17 American Mathematical Society, Providence, (2000).

  3. Böhm C., Wilking B.: Manifolds with positive curvature operator are space forms. Annals of Mathematics 167, 1079–1097 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle S.: A general convergence result for the Ricci flow in higher dimensions. Duke Mathematical Journal 145, 585–601 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Brendle Ricci flow and the sphere theorem. In: Graduate Studies in Mathematics, vol. 111. Americam Mathematical Society, Providence (2010).

  6. Brendle S., Schoen R.: Manifolds with 1/4-pinched curvature are space forms. Journal of American Mathematical Society 22, 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Brendle and R. Schoen Classification of manifolds with weakly 1/4-pinched curvatures. Acta Mathematics, 200 (2008), 1–13.

  8. Brendle S., Schoen R.: Sphere theorems in geometry. Surveys in Differential Geometry 13, 49–84 (2009)

    Article  MathSciNet  Google Scholar 

  9. Cao H.D., Chen B.L., Zhu X.P.: Recent developments on Hamilton’s Ricci flow. Surveys in Differential Geometry 12, 47–112 (2008)

    Article  MathSciNet  Google Scholar 

  10. Cheeger J., Colding T.H.: On the structure of spaces with Ricci curvature bounded below I. Journal of Differential Geomentry 46, 406–480 (1997)

    MathSciNet  MATH  Google Scholar 

  11. S.S. Chern, M. do Carmo and S. Kobayashi Minimal submanifolds of a sphere with second fundamental form of constant length. In: Functional Analysis and Related Fields. Springer, New York (1970).

  12. Ejiri N.: Compact minimal submanifolds of a sphere with positive Ricci curvature. Journal of the Mathematical Society of Japan 31, 251–256 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grove K., Petersen P.: A pinching theorem for homotopy spheres. Journal of American Mathematical Society 3, 671–677 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Grove and K. Shiohama A generalized sphere theorem. Annals of Mathematics, 106 (1977), 201–211.

    Google Scholar 

  15. J.R. Gu and H.W. Xu The sphere theorem for manifolds with positive scalar curvatue. Journal of Differential Geomentry, 92 (2012), 507–545.

  16. Hamilton R.: Three manifolds with positive Ricci curvature. Journal of Differential Geomentry 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Huisken G.: Ricci deformation of the metric on a Riemannian manifold. Journal of Differential Geomentry 21, 47–62 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Lawson B.: Local rigidity theorems for minimal hyperfaces. Annals of Mathematics 89, 187–197 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Lawson and J. Simons On stable currents and their application to global problems in real and complex geometry. Annals of Mathematics, 98 (1973), 427–450.

  20. Li A.M., Li J.M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere. Archives of Mathematics 58, 582–594 (1992)

    Article  MATH  Google Scholar 

  21. H. Z. Li Curvature pinching for odd-dimensional minimal submanifolds in a sphere. Publications de l’Institut Mathématique (Beograd), 53 (1993), 122–132.

  22. K.F. Liu, H.W. Xu, F. Ye and E.T. Zhao The extension and convergence of mean curvature flow in higher codimension, arXiv:math.DG/1104.0971.

  23. K.F. Liu, H.W. Xu, F. Ye and E.T. Zhao Mean curvature flow of higher codimension in hyperbolic spaces. Communications in Analysis and Geometry arXiv:math.DG/1105.5686 (to appear)

  24. M. Micallef and J.D. Moore Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Annals of Mathematics, 127 (1988), 199–227.

  25. Okumura M.: Submanifolds and a pinching problem on the second fundamental tensor. Transactions of the American Mathematical Society 178, 285–291 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Okumura M.: Hypersurfaces and a pinching problem on the second fundamental tensor. American Journal of Mathematics 96, 207–213 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  27. Petersen P.: On eigenvalue pinching in positive Ricci curvature. Inventiones Mathematicae 138, 1–21 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Petersen and T. Tao Classification of almost quarter-pinched manifolds. Proceedings of the American Mathematical Society, 137 (2009), 2437–2440.

  29. Y.B. Shen Curvature pinching for three-dimensional minimal submanifolds in a sphere. Proceedings of the American Mathematical Society, 115 (1992), 791–795.

  30. K. Shiohama Sphere theorems, Handbook of Differential Geometry, vol. 1. In: F.J.E. Dillen and L.C.A. Verstraelen (eds.), Elsevier Science B.V., Amsterdam (2000).

  31. K. Shiohama and H. W. Xu The topological sphere theorem for complete submanifolds. Compositio Mathematica, 107. (1997), 221–232.

  32. Simons J.: Minimal varieties in Riemannian manifolds.. Annals of Mathematics 88, 62–105 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun Z.Q.: Submanifolds with constant mean curvature in spheres. Advanced Mathematics (China) 16, 91–96 (1987)

    MATH  Google Scholar 

  34. Y.L. Xin Application of integral currents to vanishing theorems. Scient. Sinica (A), 27 (1984), 233–241.

  35. H.W. Xu Pinching theorems, global pinching theorems, and eigenvalues for Riemannian submanifolds. Ph.D. dissertation, Fudan University (1990).

  36. H.W. Xu A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Archives of Mathematics, 61. (1993), 489–496.

    Google Scholar 

  37. H.W. Xu Recent developments in differentiable sphere theorems. In: Fifth International Congress of Chinese Mathematicians, part 1, 2, 415–430. AMS/IP Studies in Advanced Mathematics, 51, pt. 1, 2, American Mathematical Society, Providence (2012).

  38. Xu H.W., Gu J.R.: An optimal differentiable sphere theorem for complete manifolds. Mathematical Research Letters 17, 1111–1124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu H.W., Zhao E.T.: Topological and differentiable sphere theorems for complete submanifolds. Communications in Analysis and Geometry 17, 565–585 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. S.T. Yau Submanifolds with constant mean curvature I, II. American Journal of Mathematics, 96, 97 (1974, 1975), 346–366, 76–100.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Ru Gu.

Additional information

Research supported by the NSFC, Grant No. 11071211; the Trans-Century Training Programme Foundation for Talents by the Ministry of Education of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, HW., Gu, JR. Geometric, topological and differentiable rigidity of submanifolds in space forms. Geom. Funct. Anal. 23, 1684–1703 (2013). https://doi.org/10.1007/s00039-013-0231-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-013-0231-x

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation