Skip to main content
Log in

Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let M be a closed Riemann surface, N a Riemannian manifold of Hermitian non-positive curvature, f : MN a continuous map, and E the function on the Teichmüller space of M that assigns to a complex structure on M the energy of the harmonic map homotopic to f. We show that E is a plurisubharmonic function on the Teichmüller space of M. If N has strictly negative Hermitian curvature, we characterize the directions in which the complex Hessian of E vanishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A morós, M.B urger, K. C orlette, D. K otschick and D. T oledo. Fundamental groups of compact Kähler manifolds. In: Mathematical Surveys and Monographs, Vol. 44. AMS, USA (1996).

  2. D. Barlet. Espace analytique réduit des cycles analytiques complexes compacts d’un espace analytic complexe de dimension finie, Seminaire Norguet 1974–1975. Lecture Notes in Mathematics, 482 (1975), 1–158.

  3. J. Eells and L. Lemaire. Deformations of metrics and harmonic maps, In: Proceedings of Indian Academy of Science (Mathematical Science), 90 (1981), 33–45. In: Harmonic Maps (Selected Papers of James Eells and Collaborators). World Scientific, USA (1992), pp. 118–130.

  4. M. Gromov. Super Stable Kählerian Horseshoe? (2010, preprint). http://www.ihes.fr/gromov/PDF/horse-shoe-jan6-2011.pdf.

  5. Hartman P.: On homotopic harmonic maps. Canadian Journal of Mathematics. 19, 673–687 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Kollár. Rational Curves on Algebraic Varieties. In: Ergebnisse der Mathematik, Dritte Folge, Band, Vol. 32. Springer, Berlin (1996).

  7. D.I. Lieberman. Compactness of the Chow scheme: applications to automorphisms and deformations of Kähler manifolds, Seminairte Norguet 1975–1977, Lecture Notes in Mathematics, 670 (1978), 140–186.

  8. J. Morrow and K. Kodaira. Complex Manifolds. Holt, Rinehart and Winston, Austin (1971).

  9. Micallef M.J., Micallef M.J.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Annals of Mathematics. 127, 199–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Sampson J.H.: Some properties and applications of harmonic mappings, Annales Scient. École Normale Supérieure. 11, 211–228 (1978)

    MathSciNet  MATH  Google Scholar 

  11. Sampson J.H.: Applications of harmonic maps to Kähler geometry. Contemprory Mathematics. 49, 125–133 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Siu Y.-T.: The complex analyticity of harmonic maps and the strong rigidity of compact Kähler manifolds. Annals of Mathematics. 112, 73–111 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Siu Y.-T.: Complex analyticity of harmonic maps, vanishing and Lefschetz theorems. Journal of Differential Geomentry. 17, 73–110 (1982)

    MathSciNet  Google Scholar 

  14. Sunada T.: Rigidity of certain harmonic mappings. Inventiones of Mathematics. 51, 297–307 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. A.Tromba. Teichmüller Theory in Riemannian Geometry. Lectures in Mathematics. Birkhäuser Verlag, ETH Zürich (1992).

  16. R.A.Wentworth. Energy of harmonic maps and Gardiner’s formula. In: The tradition of Ahlfors-Bers IV Contemprary Mathematics, Vol. 432. American Mathematical Society Providence, RI (2007), pp. 221–229.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Toledo.

Additional information

Author partially supported by NSF grants DMS 0200877 and DMS-0600816.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo, D. Hermitian Curvature and Plurisubharmonicity of Energy on Teichmüller Space. Geom. Funct. Anal. 22, 1015–1032 (2012). https://doi.org/10.1007/s00039-012-0185-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0185-4

Mathematics Subject Classification (2010)

Navigation