Skip to main content
Log in

On the Vershik–Kerov Conjecture Concerning the Shannon–McMillan–Breiman Theorem for the Plancherel Family of Measures on the Space of Young Diagrams

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Vershik and Kerov conjectured in 1985 that dimensions of irreducible representations of finite symmetric groups, after appropriate normalization, converge to a constant with respect to the Plancherel family of measures on the space of Young diagrams. The statement of the Vershik–Kerov conjecture can be seen as an analogue of the Shannon–McMillan–Breiman Theorem for the non-stationary Markov process of the growth of a Young diagram. The limiting constant is then interpreted as the entropy of the Plancherel measure. The main result of the paper is the proof of the Vershik–Kerov conjecture. The argument is based on the methods of Borodin, Okounkov and Olshanski.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz and I.A. Stegun (eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Tenth printing. http://people.math.sfu.ca/~cbm/aands/.

  2. Baik J., Deift P., Johansson K.: On the distribution of the length of the longest increasing subsequence of random permutations. Journal of American Mathematical Society, 12, 1119–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Borodin A., Okounkov A., Olshanski G.: Asymptotics of Plancherel measures for symmetric groups. Journal of American Mathematical Society, 13, 481–515 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borodin A., Olshanski G.: Distributions on partitions, point processes, and the hypergeometric kernel. Communications in Mathematical Physics(2) 211, 335–358 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bogachev L.V., Su Ch.G.: A central limit theorem for random partitions with respect to the Plancherel measure.. (Russian) Doklady Akademii Nauk(3) 414, 295–298 (2007)

    MathSciNet  Google Scholar 

  6. I.P. Cornfeld, S.V. Fomin and Ya.G. Sinai. Ergodic Theory. Translated from the Russian by A. B. Sosinskii. Grundlehren der Mathematischen Wissenschaften, Vol. 245. Springer-Verlag, New York (1982).

  7. Cover T.M., Thomas J.A.: Elements of Information Theory. Wiley-Interscience, Hoboken NJ (2006)

    MATH  Google Scholar 

  8. M.V. Fedoryuk. Metod Perevala (The Saddle-Point Method). Nauka, Moscow (1977).

  9. Johansson K.: Discrete orthogonal polynomial ensembles and the Plancherel measure. Annals of Mathematics(2)(1) 153, 259–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Johansson K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Mathematical Journal(1) 91, 151–204 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Logan B.F., Shepp L.A.: A variational problem for random Young tableaux. Advances in Mathematics (2) 26, 206–222 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Okounkov. Symmetric functions and random partitions. In: Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Science Series II Mathematics, Physics and Chemistry, Vol. 74. Kluwer Academic Publishers, Dordrecht (2002), pp. 223–252.

  13. G. Olshanski. An Introduction to Harmonic Analysis on the Infinite Symmetric Group, Asymptotic Combinatorics with Applications to Mathematical Physics (St. Petersburg, 2001). Lecture Notes in Mathematics, Vol. 1815. Springer, Berlin (2003), pp. 127–160.

  14. K. Petersen. Ergodic Theory. Cambridge Studies in Advanced Mathematics, Vol. 2. Cambridge University Press, Cambridge (1983).

  15. A. Soshnikov. Determinantal random point fields. Uspekhi Matematicheskikh Nauk, (5(335))55 (2000), 107–160. Translation in Russian Mathematical Surveys, (5)55 (2000), 923–975.

  16. A.M. Vershik and S.V. Kerov. Asymptotic behaviour of the Plancherel measure of the symmetric group and the limit form of Young tableaux. Doklady Akademii Nauk SSSR, (6)233 (1977), 1024–1027.

    Google Scholar 

  17. A.M. Vershik and S.V. Kerov. Asymptotic behaviour of the maximum and generic dimensions of irreducible representations of the symmetric group. Funktsional Analiz i ikh Prilozheniya, (1)19 (1985), 25–36, 96.

  18. Vershik A.M., Kerov S.V.: Asymptotic theory of the characters of a symmetric group.. (Russian) Funktsional Analiz i ikh Prilozheniya(4) 15, 15–27 (1981)

    MathSciNet  Google Scholar 

  19. Vershik A.M., Pavlov D.: Numerical experiments in problems of asymptotic representation theory. Zapiski Nauchnykh Seminarov POMI 373, 77–93 (2009)

    Google Scholar 

  20. Vershik A.M., Kerov S.V.: Characters and factor representations of the infinite symmetric group. Doklady Akademii Nauk SSSR(5) 257, 1037–1040 (1981)

    MathSciNet  Google Scholar 

  21. G.N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University Press (1944)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Bufetov.

Additional information

To Alesha

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bufetov, A.I. On the Vershik–Kerov Conjecture Concerning the Shannon–McMillan–Breiman Theorem for the Plancherel Family of Measures on the Space of Young Diagrams. Geom. Funct. Anal. 22, 938–975 (2012). https://doi.org/10.1007/s00039-012-0169-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-012-0169-4

Keywords

Navigation