Skip to main content
Log in

Scattering at Low Energies on Manifolds with Cylindrical Ends and Stable Systoles

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Scattering theory for p-forms on manifolds with cylindrical ends has a direct interpretation in terms of cohomology. Using the Hodge isomorphism, the scattering matrix at low energy may be regarded as an operator on the cohomology of the boundary. Its value at zero describes the image of the absolute cohomology in the cohomology of the boundary. We show that the so-called scattering length, the Eisenbud–Wigner time delay at zero energy, has a cohomological interpretation as well. Namely, it relates the norm of a cohomology class on the boundary to the norm of its image under the connecting homomorphism in the long exact sequence in cohomology. An interesting consequence of this is that one can estimate the scattering lengths in terms of geometric data like the volumes of certain homological systoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah M.F., Patodi V.K., Singer I.M.: Spectral asymmetry and Riemannian geometry. I. Math. Proc. Cambridge Philos. Soc. 77, 43–69 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auer F., Bangert V.: Differentiability of the stable norm in codimension one. Amer. J. Math. 128(1), 215–238 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Booss-Bavnbek B.: Unique continuation property for Dirac operators, revisited. Contemp. Math. 258, 21–32 (2000)

    MathSciNet  Google Scholar 

  4. Booss-Bavnbek B., Wojciechowski K.P.: Elliptic Boundary Problems for Dirac Operators. Birkhäuser, Boston Basel Berlin (1993)

    MATH  Google Scholar 

  5. Chernoff P.R.: Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis 12, 401–414 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Christiansen T.: Scattering theory for manifolds with asymptotically cylindrical ends. J. Funct. Anal. 131(2), 499–530 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Christiansen T.: Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends. Annales Henri Poincaré 3(5), 895–920 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Duff G.F.D., Spencer D.C.: Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. (2) 56, 128–156 (1952)

    Article  MathSciNet  Google Scholar 

  9. L. Eisenbud, Dissertation, Princeton University, 1948, unpublished.

  10. H. Federer, Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften 153, Springer-Verlag, New York Inc., New York (1969).

  11. H. Federer, Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351–407.

  12. Federer H., Fleming W.H.: Normal and integral currents. Ann. of Math. (2) 72, 458–520 (1960)

    Article  MathSciNet  Google Scholar 

  13. Glushakov A.N., Kozlov S.E.: Geometry of the sphere of calibrations of degree two. Journal of Mathematical Sciences (4) 110, 2776–2782 (2002)

    Article  MathSciNet  Google Scholar 

  14. M. Gromov, Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics 152, Birkhäuser Boston Inc., Boston, MA, 1999 (Based on the 1981 French original [MR0682063 (85e:53051)], with appendices by M. Katz, P. Pansu and S. Semmes, Translated from the French by S.M. Bates.

  15. Guillopé L.: Théorie spectrale de quelques variétés à bouts. Ann. Sci. École Norm. Sup. (4) 22(1), 137–160 (1989)

    MATH  Google Scholar 

  16. Isozaki H., Kurylev Y., Lassas M.: Forward and Inverse scattering on manifolds with asymptotically cylindrical ends. Journal of Functional Analysis 258, 2060–2118 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Melrose, Geometric Scattering Theory, Stanford Lectures, Cambridge University Press, Cambridge, 1995.

  18. R. Melrose, The Atiyah–Patodi–Singer Index Theorem, Research Notes in Mathematics 4, A.K. Peters Ltd., Wellesley, MA, 1993.

  19. Müller W.: Eta invariants and manifolds with boundary. J. Differential Geom. 40(2), 311–377 (1994)

    MATH  MathSciNet  Google Scholar 

  20. Reed M., Simon B.: Methods of Modern Mathematical Physics III. Scattering Theory. Academic Press, New York-London (1979)

    MATH  Google Scholar 

  21. Strohmaier A.: Analytic continuation of resolvent kernels on noncompact symmetric spaces. Math. Z. 250, 411–425 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. D.R. Yafaev, Mathematical Scattering Theory. General Theory, Translations of Mathematical Monographs, 105. Amer. Math. Society, Providence, RI, 1992.

  23. Wigner E.P.: Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145–147 (1955)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Strohmaier.

Additional information

The second author was supported by the Leverhulm trust and the MPI Bonn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, W., Strohmaier, A. Scattering at Low Energies on Manifolds with Cylindrical Ends and Stable Systoles. Geom. Funct. Anal. 20, 741–778 (2010). https://doi.org/10.1007/s00039-010-0079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0079-2

Keywords and phrases

2010 Mathematics Subject Classification

Navigation