Skip to main content
Log in

Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

In [Do], Doi proved that the \({L^{2}_{t}H^{1/2}_{x}}\) local smoothing effect for Schrödinger equations on a Riemannian manifold does not hold if the geodesic flow has one trapped trajectory. We show in contrast that Strichartz estimates and L 1L dispersive estimates still hold without loss for eitΔ in various situations where the trapped set is hyperbolic and of sufficiently small fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anantharaman N.: Entropy and the localization of eigenfunctions. Annals of Math. 168(2), 435–475 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anantharaman N., Nonnenmacher S.: Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble) 57(7), 1465–2523 (2007)

    MathSciNet  Google Scholar 

  3. Anker J-P., Pierfelice V.: Nonlinear Schrödinger equation on real hyperbolic spaces. Ann. Henri Poincaré Analyse Non-Linéaire 26(5), 1853–1869 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Babič V.M.: Eigenfunctions which are concentrated in the neighborhood of a closed geodesic (in Russian). Zap. Nau cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 9, 15–63 (1968)

    Google Scholar 

  5. Banica V.: The nonlinear Schrödinger equation on the hyperbolic space. Comm. PDE 32(10), 1643–1677 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. J.-M. Bouclet, Semi-classical functional calculus on manifolds with ends and weighted L p estimates, Arxiv:0711.358.

  7. Bouclet J.-M.: Littlewood–Paley decompositions on manifolds with ends. Bull. Soc. Math. Fr. 138(1), 1–37 (2010)

    MATH  MathSciNet  Google Scholar 

  8. J.-M. Bouclet, Strichartz estimates for asymptotically hyperbolic manifolds, Analysis and PDE, in press.

  9. Bouclet J.-M., Tzvetkov N.: Strichartz estimates for long range perturbations. Amer. J. Math. 129:6, 1665–1609 (2007)

    Google Scholar 

  10. Bourgain J.: Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. Geom. Funct. Anal. 3, 107–156 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Burq N.: Smoothing effect for Schrödinger boundary value problems. Duke Math. J. 123(2), 403–427 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Burq N., Gerard P., Tzvetkov N.: Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds. Amer. J. Math 126, 569–605 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Burq N., Gerard P., Tzvetkov N.: On Nonlinear Schrödinger equations in exterior domains. Ann. I.H.P. Ana. non lin. 21, 295–318 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burq N., Zworski M.: Geometric control in the presence of a black box. J. Amer. Math. Soc. 17(2), 443–471 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cardoso F., Vodev G.: Uniform estimates of the Laplace–Beltrami operator on infinite volume Riemannian manifolds II. Ann. H. Poincaré 3, 673–691 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Carles R.: Global existence results for nonlinear Schrödinger equations with quadratic potentials. Discrete Contin. Dyn. Syst. 13(2), 385–398 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. Christ M., Kiselev A.: Maximal functions associated to filtrations. J. Funct. Anal. 179, 409–425 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Christianson H.: Cutoff resolvent estimates and the semilinear Schrödinger equation, Proc. Amer. Math. Soc. 136(10), 3513–3520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Constantin P., Saut J.-C.: Effets régularisants locaux pour des équations dispersives générales. C. R. AcadS ci. Paris Sér. I Math. 304(14), 407–410 (1987)

    MATH  MathSciNet  Google Scholar 

  20. K. Datchev, Local smoothing for scattering manifolds with hyperbolic trapped sets, Comm. Math. Phys. 286:3, 837–850.

  21. Doi S.-I.: Smoothing effects for Schrödinger evolution equation and global behaviour of geodesic flow. Math. Ann. 318, 355–389 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gaspard P., Rice S.A.: Semiclassical quantization of the scattering from a classically chaotic repellor. J. Chem. Phys. 90, 2242–2254 (1989)

    Article  MathSciNet  Google Scholar 

  23. C. Guillarmou, S. Moroianu, J. Park, Eta invariant and Selberg Zeta function of odd type over convex co-compact hyperbolic manifolds., Advances in Math., to appear; Arxiv 0901.4082

  24. B. Hasselblatt, A. Katok, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, 1997.

  25. Hassell A., Tao T., Wunsch J.: Sharp Strichartz estimates on nontrapping asymptotically conic manifolds. Amer. J. Math. 128(4), 963–1024 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Hassell A., Vasy A.: Symbolic functional calculus and N-body resolvent estimates. J. Funct. Anal. 173(2), 257–283 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ionescu A., Staffilani G.: Semilinear Schrödinger flow on hyperbolic space: scattering in H 1. Math. Ann. 345(1), 133–158 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Keel M., Tao T.: Endpoint Strichartz estimates. Amer. J. Math. 15, 955–980 (1998)

    Article  MathSciNet  Google Scholar 

  29. Klingenberg W.: Riemannian Geometry, Studies in Mathematics, de Gruyter. New-York, Berlin (1982)

    Google Scholar 

  30. Mazzeo R., Melrose R.: Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature. J. Funct. Anal. 75, 260–310 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, in “Spectral and Scattering Theory” (M. Ikawa, ed.), Marcel Dekker, 1994.

  32. Nonnenmacher S., Zworski M.: Quantum decay rates in chaotic scattering. Acta Math. 203(2), 149–233 (2009)

    Article  MathSciNet  Google Scholar 

  33. G.P. Paternain, Geodesic Flows. Progress in Mathematics 180, Birkhäuser Boston Inc., Boston MA (1999).

  34. Patterson S.J.: The limit set of a Fuchsian group. Acta Math. 136, 241–273 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  35. Perry P.: Asymptotics of the length spectrum for hyperbolic manifolds of infinite volume. Geom. Funct. Anal. 11, 132–141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. M.F. Py skina, The asymptotic behavior of eigenfunctions of the Helmholtz equation that are concentrated near a closed geodesic (in Russian), Zap. Nau cn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 15 (1969), 154–160.

  37. Ralston J.V.: On the construction of quasimodes associated with stable periodic orbits. Comm. Math. Phys. 51-3, 219–242 (1976)

    Article  MathSciNet  Google Scholar 

  38. J. Schmeling, R. Siegmund-Schultze, Hölder continuity of the holonomy maps for hyperbolic basic sets. I., Ergodic Theory and Related Topics, III (Güstrow, 1990), Springer Lecture Notes in Math. 1514 (1992), 174–191.

  39. Staffilani G., Tataru D.: Strichartz estimates for a Schrödinger operator with nonsmooth coefficients. Comm. Part. Diff. Eq. 27(7-8), 1337–1372 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  40. Strichartz R.: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J. 44(3), 705–714 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  41. Sullivan D.: The density at infinity of a discrete group of hyperbolic motions. Publ. IHES 50, 172–202 (1979)

    Google Scholar 

  42. Takaoka H., Tzvetkov N.: On 2D nonlinear Schrödinger equation on \({\mathbb {R} \times \mathbb {T}}\) . J. Funct. Anal. 182(2), 427–442 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wunsch J., Zworski M.: Distribution of resonances for asymptotically Euclidean manifolds. J. Diff. Geom. 55, 43–82 (2000)

    MATH  MathSciNet  Google Scholar 

  44. Zworski M.: Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces. Invent. Math. 136(2), 353–409 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Burq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burq, N., Guillarmou, C. & Hassell, A. Strichartz Estimates Without Loss on Manifolds with Hyperbolic Trapped Geodesics. Geom. Funct. Anal. 20, 627–656 (2010). https://doi.org/10.1007/s00039-010-0076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-010-0076-5

Keywords and phrases

2010 Mathematics Subject Classification

Navigation